1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
use serde::{Deserialize, Serialize};

use crate::crypto::encoding::{Cleartext, CleartextList, Plaintext};
use crate::crypto::secret::LweSecretKey;
use crate::math::tensor::{AsMutTensor, AsRefTensor, Tensor};
use crate::tensor_traits;

use super::LweList;
use crate::crypto::glwe::GlweCiphertext;
use crate::math::polynomial::MonomialDegree;
use crate::math::torus::UnsignedTorus;
use concrete_commons::key_kinds::KeyKind;
use concrete_commons::numeric::{Numeric, UnsignedInteger};
use concrete_commons::parameters::{LweDimension, LweSize};

/// A ciphertext encrypted using the LWE scheme.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
pub struct LweCiphertext<Cont> {
    pub(super) tensor: Tensor<Cont>,
}

tensor_traits!(LweCiphertext);

impl<Scalar> LweCiphertext<Vec<Scalar>>
where
    Scalar: Copy,
{
    /// Allocates a new ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::parameters::{LweDimension, LweSize};
    /// use concrete_core::crypto::lwe::LweCiphertext;
    /// let ct = LweCiphertext::allocate(0 as u8, LweSize(4));
    /// assert_eq!(ct.lwe_size(), LweSize(4));
    /// assert_eq!(ct.get_mask().mask_size(), LweDimension(3));
    /// ```
    pub fn allocate(value: Scalar, size: LweSize) -> Self {
        LweCiphertext {
            tensor: Tensor::from_container(vec![value; size.0]),
        }
    }
}

impl<Cont> LweCiphertext<Cont> {
    /// Creates a ciphertext from a container of values.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::parameters::{LweDimension, LweSize};
    /// use concrete_core::crypto::lwe::LweCiphertext;
    /// let vector = vec![0 as u8; 10];
    /// let ct = LweCiphertext::from_container(vector.as_slice());
    /// assert_eq!(ct.lwe_size(), LweSize(10));
    /// assert_eq!(ct.get_mask().mask_size(), LweDimension(9));
    /// ```
    pub fn from_container(cont: Cont) -> LweCiphertext<Cont> {
        let tensor = Tensor::from_container(cont);
        LweCiphertext { tensor }
    }

    /// Returns the size of the cipher, e.g. the size of the mask + 1 for the body.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::parameters::LweSize;
    /// use concrete_core::crypto::lwe::LweCiphertext;
    /// let ct = LweCiphertext::allocate(0 as u8, LweSize(4));
    /// assert_eq!(ct.lwe_size(), LweSize(4));
    /// ```
    pub fn lwe_size(&self) -> LweSize
    where
        Self: AsRefTensor,
    {
        LweSize(self.as_tensor().len())
    }

    /// Returns the body of the ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_core::crypto::lwe::{LweBody, LweCiphertext};
    /// let ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let body = ciphertext.get_body();
    /// assert_eq!(body, &LweBody(0 as u8));
    /// ```
    pub fn get_body<Scalar>(&self) -> &LweBody<Scalar>
    where
        Self: AsRefTensor<Element = Scalar>,
    {
        unsafe { &*{ self.as_tensor().last() as *const Scalar as *const LweBody<Scalar> } }
    }

    /// Returns the mask of the ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::lwe::LweCiphertext;
    /// let ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let mask = ciphertext.get_mask();
    /// assert_eq!(mask.mask_size(), LweDimension(9));
    /// ```
    pub fn get_mask<Scalar>(&self) -> LweMask<&[Scalar]>
    where
        Self: AsRefTensor<Element = Scalar>,
    {
        let (_, mask) = self.as_tensor().split_last();
        LweMask { tensor: mask }
    }

    /// Returns the body and the mask of the ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::lwe::{LweBody, LweCiphertext};
    /// let ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let (body, mask) = ciphertext.get_body_and_mask();
    /// assert_eq!(body, &LweBody(0));
    /// assert_eq!(mask.mask_size(), LweDimension(9));
    /// ```
    pub fn get_body_and_mask<Scalar>(&self) -> (&LweBody<Scalar>, LweMask<&[Scalar]>)
    where
        Self: AsRefTensor<Element = Scalar>,
    {
        let (body, mask) = self.as_tensor().split_last();
        let body = unsafe { &*{ body as *const Scalar as *const LweBody<Scalar> } };
        (body, LweMask { tensor: mask })
    }

    /// Returns the mutable body of the ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_core::crypto::lwe::{LweBody, LweCiphertext};
    /// let mut ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let mut body = ciphertext.get_mut_body();
    /// *body = LweBody(8);
    /// let body = ciphertext.get_body();
    /// assert_eq!(body, &LweBody(8 as u8));
    /// ```
    pub fn get_mut_body<Scalar>(&mut self) -> &mut LweBody<Scalar>
    where
        Self: AsMutTensor<Element = Scalar>,
    {
        unsafe { &mut *{ self.as_mut_tensor().last_mut() as *mut Scalar as *mut LweBody<Scalar> } }
    }

    /// Returns the mutable mask of the ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::*;
    /// let mut ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let mut mask = ciphertext.get_mut_mask();
    /// for mut elt in mask.mask_element_iter_mut() {
    ///     *elt = 8;
    /// }
    /// let mask = ciphertext.get_mask();
    /// for elt in mask.mask_element_iter() {
    ///     assert_eq!(*elt, 8);
    /// }
    /// assert_eq!(mask.mask_element_iter().count(), 9);
    /// ```
    pub fn get_mut_mask<Scalar>(&mut self) -> LweMask<&mut [Scalar]>
    where
        Self: AsMutTensor<Element = Scalar>,
    {
        let (_, masks) = self.as_mut_tensor().split_last_mut();
        LweMask { tensor: masks }
    }

    /// Returns the mutable body and mask of the ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::*;
    /// let mut ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let (body, mask) = ciphertext.get_mut_body_and_mask();
    /// assert_eq!(body, &mut LweBody(0));
    /// assert_eq!(mask.mask_size(), LweDimension(9));
    /// ```
    pub fn get_mut_body_and_mask<Scalar>(
        &mut self,
    ) -> (&mut LweBody<Scalar>, LweMask<&mut [Scalar]>)
    where
        Self: AsMutTensor<Element = Scalar>,
    {
        let (body, masks) = self.as_mut_tensor().split_last_mut();
        let body = unsafe { &mut *{ body as *mut Scalar as *mut LweBody<Scalar> } };
        (body, LweMask { tensor: masks })
    }

    /// Fills the ciphertext with the result of the multiplication of the `input` ciphertext by the
    /// `scalar` cleartext.
    ///
    /// # Example
    ///
    /// ```rust
    /// use concrete_commons::dispersion::LogStandardDev;
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::encoding::*;
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::secret::generators::{
    ///     EncryptionRandomGenerator, SecretRandomGenerator,
    /// };
    /// use concrete_core::crypto::secret::LweSecretKey;
    /// use concrete_core::crypto::*;
    ///
    /// let mut secret_generator = SecretRandomGenerator::new(None);
    /// let mut encryption_generator = EncryptionRandomGenerator::new(None);
    ///
    /// let secret_key = LweSecretKey::generate_binary(LweDimension(256), &mut secret_generator);
    /// let noise = LogStandardDev::from_log_standard_dev(-15.);
    /// let encoder = RealEncoder {
    ///     offset: 0. as f32,
    ///     delta: 10.,
    /// };
    ///
    /// let cleartext = Cleartext(2. as f32);
    /// let plaintext: Plaintext<u32> = encoder.encode(cleartext);
    /// let mut ciphertext = LweCiphertext::from_container(vec![0. as u32; 257]);
    /// secret_key.encrypt_lwe(
    ///     &mut ciphertext,
    ///     &plaintext,
    ///     noise,
    ///     &mut encryption_generator,
    /// );
    ///
    /// let mut processed = LweCiphertext::from_container(vec![0 as u32; 257]);
    /// processed.fill_with_scalar_mul(&ciphertext, &Cleartext(4));
    ///
    /// let mut decrypted = Plaintext(0 as u32);
    /// secret_key.decrypt_lwe(&mut decrypted, &processed);
    /// let decoded = encoder.decode(decrypted);
    /// assert!((decoded.0 - (cleartext.0 * 4.)).abs() < 0.2);
    /// ```
    pub fn fill_with_scalar_mul<Scalar, InputCont>(
        &mut self,
        input: &LweCiphertext<InputCont>,
        scalar: &Cleartext<Scalar>,
    ) where
        Self: AsMutTensor<Element = Scalar>,
        LweCiphertext<InputCont>: AsRefTensor<Element = Scalar>,
        Scalar: UnsignedInteger,
    {
        self.as_mut_tensor()
            .fill_with_one(input.as_tensor(), |o| o.wrapping_mul(scalar.0));
    }

    /// Fills the ciphertext with the result of the multisum of the `input_list` with the
    /// `weights` values, and adds a bias.
    ///
    /// Said differently, this function fills `self` with:
    /// $$
    /// bias + \sum_i input_list\[i\] * weights\[i\]
    /// $$
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::dispersion::LogStandardDev;
    /// use concrete_commons::parameters::{LweDimension, LweSize};
    /// use concrete_core::crypto::encoding::*;
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::secret::generators::{
    ///     EncryptionRandomGenerator, SecretRandomGenerator,
    /// };
    /// use concrete_core::crypto::secret::LweSecretKey;
    /// use concrete_core::crypto::*;
    ///
    /// let mut secret_generator = SecretRandomGenerator::new(None);
    /// let mut encryption_generator = EncryptionRandomGenerator::new(None);
    ///
    /// let secret_key = LweSecretKey::generate_binary(LweDimension(4), &mut secret_generator);
    /// let noise = LogStandardDev::from_log_standard_dev(-15.);
    /// let encoder = RealEncoder {
    ///     offset: 0. as f32,
    ///     delta: 100.,
    /// };
    ///
    /// let clear_values = CleartextList::from_container(vec![1. as f32, 2., 3.]);
    /// let mut plain_values = PlaintextList::from_container(vec![0 as u32; 3]);
    /// encoder.encode_list(&mut plain_values, &clear_values);
    /// let mut ciphertext_values = LweList::from_container(vec![0. as u32; 5 * 3], LweSize(5));
    /// secret_key.encrypt_lwe_list(
    ///     &mut ciphertext_values,
    ///     &plain_values,
    ///     noise,
    ///     &mut encryption_generator,
    /// );
    ///
    /// let mut output = LweCiphertext::from_container(vec![0. as u32; 5]);
    /// let weights = CleartextList::from_container(vec![7, 8, 9]);
    /// let bias = encoder.encode(Cleartext(13.));
    ///
    /// output.fill_with_multisum_with_bias(&ciphertext_values, &weights, &bias);
    ///
    /// let mut decrypted = Plaintext(0 as u32);
    /// secret_key.decrypt_lwe(&mut decrypted, &output);
    /// let decoded = encoder.decode(decrypted);
    /// assert!((decoded.0 - 63.).abs() < 0.1);
    /// ```
    pub fn fill_with_multisum_with_bias<Scalar, InputCont, WeightCont>(
        &mut self,
        input_list: &LweList<InputCont>,
        weights: &CleartextList<WeightCont>,
        bias: &Plaintext<Scalar>,
    ) where
        Self: AsMutTensor<Element = Scalar>,
        LweList<InputCont>: AsRefTensor<Element = Scalar>,
        CleartextList<WeightCont>: AsRefTensor<Element = Scalar>,
        Scalar: UnsignedInteger,
    {
        // loop over the ciphertexts and the weights
        for (input_cipher, weight) in input_list.ciphertext_iter().zip(weights.cleartext_iter()) {
            let cipher_tens = input_cipher.as_tensor();
            self.as_mut_tensor().update_with_one(cipher_tens, |o, c| {
                *o = o.wrapping_add(c.wrapping_mul(weight.0))
            });
        }

        // add the bias
        let new_body = (self.get_body().0).wrapping_add(bias.0);
        *self.get_mut_body() = LweBody(new_body);
    }

    /// Adds the `other` ciphertext to the current one.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::dispersion::LogStandardDev;
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::encoding::*;
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::secret::generators::{
    ///     EncryptionRandomGenerator, SecretRandomGenerator,
    /// };
    /// use concrete_core::crypto::secret::LweSecretKey;
    /// use concrete_core::crypto::*;
    ///
    /// let mut secret_generator = SecretRandomGenerator::new(None);
    /// let mut encryption_generator = EncryptionRandomGenerator::new(None);
    ///
    /// let secret_key = LweSecretKey::generate_binary(LweDimension(256), &mut secret_generator);
    /// let noise = LogStandardDev::from_log_standard_dev(-15.);
    /// let encoder = RealEncoder {
    ///     offset: 0. as f32,
    ///     delta: 10.,
    /// };
    ///
    /// let clear_1 = Cleartext(2. as f32);
    /// let plain_1: Plaintext<u32> = encoder.encode(clear_1);
    /// let mut cipher_1 = LweCiphertext::from_container(vec![0. as u32; 257]);
    /// secret_key.encrypt_lwe(&mut cipher_1, &plain_1, noise, &mut encryption_generator);
    ///
    /// let clear_2 = Cleartext(3. as f32);
    /// let plain_2: Plaintext<u32> = encoder.encode(clear_2);
    /// let mut cipher_2 = LweCiphertext::from_container(vec![0. as u32; 257]);
    /// secret_key.encrypt_lwe(&mut cipher_2, &plain_2, noise, &mut encryption_generator);
    ///
    /// cipher_1.update_with_add(&cipher_2);
    ///
    /// let mut decrypted = Plaintext(0 as u32);
    /// secret_key.decrypt_lwe(&mut decrypted, &cipher_1);
    /// let decoded = encoder.decode(decrypted);
    ///
    /// assert!((decoded.0 - 5.).abs() < 0.1);
    /// ```
    pub fn update_with_add<OtherCont, Scalar>(&mut self, other: &LweCiphertext<OtherCont>)
    where
        Self: AsMutTensor<Element = Scalar>,
        LweCiphertext<OtherCont>: AsRefTensor<Element = Scalar>,
        Scalar: UnsignedTorus,
    {
        self.as_mut_tensor()
            .update_with_wrapping_add(other.as_tensor())
    }

    /// Subtracts the `other` ciphertext from the current one.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::dispersion::LogStandardDev;
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::encoding::*;
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::secret::generators::{
    ///     EncryptionRandomGenerator, SecretRandomGenerator,
    /// };
    /// use concrete_core::crypto::secret::LweSecretKey;
    /// use concrete_core::crypto::*;
    ///
    /// let mut secret_generator = SecretRandomGenerator::new(None);
    /// let mut encryption_generator = EncryptionRandomGenerator::new(None);
    ///
    /// let secret_key = LweSecretKey::generate_binary(LweDimension(256), &mut secret_generator);
    /// let noise = LogStandardDev::from_log_standard_dev(-15.);
    /// let encoder = RealEncoder {
    ///     offset: 0. as f32,
    ///     delta: 10.,
    /// };
    ///
    /// let clear_1 = Cleartext(3. as f32);
    /// let plain_1: Plaintext<u32> = encoder.encode(clear_1);
    /// let mut cipher_1 = LweCiphertext::from_container(vec![0. as u32; 257]);
    /// secret_key.encrypt_lwe(&mut cipher_1, &plain_1, noise, &mut encryption_generator);
    ///
    /// let clear_2 = Cleartext(2. as f32);
    /// let plain_2: Plaintext<u32> = encoder.encode(clear_2);
    /// let mut cipher_2 = LweCiphertext::from_container(vec![0. as u32; 257]);
    /// secret_key.encrypt_lwe(&mut cipher_2, &plain_2, noise, &mut encryption_generator);
    ///
    /// cipher_1.update_with_sub(&cipher_2);
    ///
    /// let mut decrypted = Plaintext(0 as u32);
    /// secret_key.decrypt_lwe(&mut decrypted, &cipher_1);
    /// let decoded = encoder.decode(decrypted);
    ///
    /// assert!((decoded.0 - 1.).abs() < 0.1);
    /// ```
    pub fn update_with_sub<OtherCont, Scalar>(&mut self, other: &LweCiphertext<OtherCont>)
    where
        Self: AsMutTensor<Element = Scalar>,
        LweCiphertext<OtherCont>: AsRefTensor<Element = Scalar>,
        Scalar: UnsignedTorus,
    {
        self.as_mut_tensor()
            .update_with_wrapping_sub(other.as_tensor())
    }

    /// Negates the ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::dispersion::LogStandardDev;
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::encoding::*;
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::secret::generators::{
    ///     EncryptionRandomGenerator, SecretRandomGenerator,
    /// };
    /// use concrete_core::crypto::secret::LweSecretKey;
    /// use concrete_core::crypto::*;
    ///
    /// let mut secret_generator = SecretRandomGenerator::new(None);
    /// let mut encryption_generator = EncryptionRandomGenerator::new(None);
    ///
    /// let secret_key = LweSecretKey::generate_binary(LweDimension(256), &mut secret_generator);
    /// let noise = LogStandardDev::from_log_standard_dev(-15.);
    /// let encoder = RealEncoder {
    ///     offset: -5. as f32,
    ///     delta: 10.,
    /// };
    ///
    /// let clear = Cleartext(2. as f32);
    /// let plain: Plaintext<u32> = encoder.encode(clear);
    /// let mut cipher = LweCiphertext::from_container(vec![0. as u32; 257]);
    /// secret_key.encrypt_lwe(&mut cipher, &plain, noise, &mut encryption_generator);
    ///
    /// cipher.update_with_neg();
    ///
    /// let mut decrypted = Plaintext(0 as u32);
    /// secret_key.decrypt_lwe(&mut decrypted, &cipher);
    /// let decoded = encoder.decode(decrypted);
    ///
    /// assert!((decoded.0 - (-2.)).abs() < 0.1);
    /// ```
    pub fn update_with_neg<Scalar>(&mut self)
    where
        Self: AsMutTensor<Element = Scalar>,
        Scalar: UnsignedTorus,
    {
        self.as_mut_tensor().update_with_wrapping_neg()
    }

    /// Multiplies the current ciphertext with a scalar value inplace.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::dispersion::LogStandardDev;
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::encoding::*;
    /// use concrete_core::crypto::lwe::*;
    /// use concrete_core::crypto::secret::generators::{
    ///     EncryptionRandomGenerator, SecretRandomGenerator,
    /// };
    /// use concrete_core::crypto::secret::LweSecretKey;
    /// use concrete_core::crypto::*;
    ///
    /// let mut secret_generator = SecretRandomGenerator::new(None);
    /// let mut encryption_generator = EncryptionRandomGenerator::new(None);
    ///
    /// let secret_key = LweSecretKey::generate_binary(LweDimension(256), &mut secret_generator);
    /// let noise = LogStandardDev::from_log_standard_dev(-15.);
    /// let encoder = RealEncoder {
    ///     offset: 0. as f32,
    ///     delta: 10.,
    /// };
    ///
    /// let clear = Cleartext(2. as f32);
    /// let plain: Plaintext<u32> = encoder.encode(clear);
    /// let mut cipher = LweCiphertext::from_container(vec![0. as u32; 257]);
    /// secret_key.encrypt_lwe(&mut cipher, &plain, noise, &mut encryption_generator);
    ///
    /// cipher.update_with_scalar_mul(Cleartext(3));
    ///
    /// let mut decrypted = Plaintext(0 as u32);
    /// secret_key.decrypt_lwe(&mut decrypted, &cipher);
    /// let decoded = encoder.decode(decrypted);
    ///
    /// assert!((decoded.0 - 6.).abs() < 0.2);
    /// ```
    pub fn update_with_scalar_mul<Scalar>(&mut self, scalar: Cleartext<Scalar>)
    where
        Self: AsMutTensor<Element = Scalar>,
        Scalar: UnsignedTorus,
    {
        self.as_mut_tensor()
            .update_with_wrapping_scalar_mul(&scalar.0)
    }

    /// Fills an LWE ciphertext with the sample extraction of one of the coefficients of a GLWE
    /// ciphertext.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_commons::dispersion::LogStandardDev;
    /// use concrete_commons::parameters::{GlweDimension, LweDimension, PolynomialSize};
    /// use concrete_core::crypto::encoding::{Plaintext, PlaintextList};
    /// use concrete_core::crypto::glwe::GlweCiphertext;
    /// use concrete_core::crypto::lwe::LweCiphertext;
    /// use concrete_core::crypto::secret::generators::{
    ///     EncryptionRandomGenerator, SecretRandomGenerator,
    /// };
    /// use concrete_core::crypto::secret::GlweSecretKey;
    /// use concrete_core::math::polynomial::MonomialDegree;
    /// use concrete_core::math::tensor::AsRefTensor;
    ///
    /// let mut secret_generator = SecretRandomGenerator::new(None);
    /// let mut encryption_generator = EncryptionRandomGenerator::new(None);
    /// let poly_size = PolynomialSize(4);
    /// let glwe_dim = GlweDimension(2);
    /// let glwe_secret_key =
    ///     GlweSecretKey::generate_binary(glwe_dim, poly_size, &mut secret_generator);
    /// let mut plaintext_list =
    ///     PlaintextList::from_container(vec![100000 as u32, 200000, 300000, 400000]);
    /// let mut glwe_ct = GlweCiphertext::allocate(0u32, poly_size, glwe_dim.to_glwe_size());
    /// let mut lwe_ct =
    ///     LweCiphertext::allocate(0u32, LweDimension(poly_size.0 * glwe_dim.0).to_lwe_size());
    /// glwe_secret_key.encrypt_glwe(
    ///     &mut glwe_ct,
    ///     &plaintext_list,
    ///     LogStandardDev(-25.),
    ///     &mut encryption_generator,
    /// );
    /// let lwe_secret_key = glwe_secret_key.into_lwe_secret_key();
    ///
    /// // Check for the first
    /// for i in 0..4 {
    ///     // We sample extract
    ///     lwe_ct.fill_with_glwe_sample_extraction(&glwe_ct, MonomialDegree(i));
    ///     // We decrypt
    ///     let mut output = Plaintext(0u32);
    ///     lwe_secret_key.decrypt_lwe(&mut output, &lwe_ct);
    ///     // We check that the decryption is correct
    ///     let plain = plaintext_list.as_tensor().get_element(i);
    ///     let d0 = output.0.wrapping_sub(*plain);
    ///     let d1 = plain.wrapping_sub(output.0);
    ///     let dist = std::cmp::min(d0, d1);
    ///     assert!(dist < 400);
    /// }
    /// ```
    pub fn fill_with_glwe_sample_extraction<InputCont, Element>(
        &mut self,
        glwe: &GlweCiphertext<InputCont>,
        n_th: MonomialDegree,
    ) where
        Self: AsMutTensor<Element = Element>,
        GlweCiphertext<InputCont>: AsRefTensor<Element = Element>,
        Element: UnsignedTorus,
    {
        glwe.fill_lwe_with_sample_extraction(self, n_th);
    }
}

/// The mask of an LWE encrypted ciphertext.
#[derive(Debug, PartialEq, Eq)]
pub struct LweMask<Cont> {
    tensor: Tensor<Cont>,
}

tensor_traits!(LweMask);

impl<Cont> LweMask<Cont> {
    /// Creates a mask from a scalar container.
    ///
    /// # Example
    ///
    /// ```rust
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::lwe::*;
    /// let masks = LweMask::from_container(vec![0 as u8; 10]);
    /// assert_eq!(masks.mask_size(), LweDimension(10));
    /// ```
    pub fn from_container(cont: Cont) -> LweMask<Cont> {
        LweMask {
            tensor: Tensor::from_container(cont),
        }
    }

    /// Returns an iterator over the mask elements.
    ///
    /// # Example
    ///
    /// ```rust
    /// use concrete_core::crypto::lwe::*;
    /// let mut ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let masks = ciphertext.get_mask();
    /// for mask in masks.mask_element_iter() {
    ///     assert_eq!(mask, &0);
    /// }
    /// assert_eq!(masks.mask_element_iter().count(), 9);
    /// ```
    pub fn mask_element_iter(&self) -> impl Iterator<Item = &<Self as AsRefTensor>::Element>
    where
        Self: AsRefTensor,
    {
        self.as_tensor().iter()
    }

    /// Returns an iterator over mutable mask elements.
    ///
    /// # Example
    ///
    /// ```rust
    /// use concrete_core::crypto::lwe::*;
    /// let mut ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// let mut masks = ciphertext.get_mut_mask();
    /// for mask in masks.mask_element_iter_mut() {
    ///     *mask = 9;
    /// }
    /// for mask in masks.mask_element_iter() {
    ///     assert_eq!(mask, &9);
    /// }
    /// assert_eq!(masks.mask_element_iter_mut().count(), 9);
    /// ```
    pub fn mask_element_iter_mut(
        &mut self,
    ) -> impl Iterator<Item = &mut <Self as AsMutTensor>::Element>
    where
        Self: AsMutTensor,
    {
        self.as_mut_tensor().iter_mut()
    }

    /// Returns the number of masks.
    ///
    /// # Example
    ///
    /// ```rust
    /// use concrete_commons::parameters::LweDimension;
    /// use concrete_core::crypto::lwe::*;
    /// let mut ciphertext = LweCiphertext::from_container(vec![0 as u8; 10]);
    /// assert_eq!(ciphertext.get_mask().mask_size(), LweDimension(9));
    /// ```
    pub fn mask_size(&self) -> LweDimension
    where
        Self: AsRefTensor,
    {
        LweDimension(self.as_tensor().len())
    }

    /// Computes sum of the mask elements weighted by the key elements.
    ///
    /// # Example
    ///
    /// ```
    /// use concrete_core::crypto::lwe::LweCiphertext;
    /// use concrete_core::crypto::secret::LweSecretKey;
    /// let ciphertext = LweCiphertext::from_container(vec![1u32, 2, 3, 4, 5]);
    /// let mask = ciphertext.get_mask();
    /// let key = LweSecretKey::binary_from_container(vec![1, 1, 0, 1]);
    /// let multisum = mask.compute_multisum(&key);
    /// assert_eq!(multisum, 7);
    /// ```
    pub fn compute_multisum<Kind, Scalar, Cont1>(&self, key: &LweSecretKey<Kind, Cont1>) -> Scalar
    where
        Self: AsRefTensor<Element = Scalar>,
        LweSecretKey<Kind, Cont1>: AsRefTensor<Element = Scalar>,
        Kind: KeyKind,
        Scalar: UnsignedTorus,
    {
        self.as_tensor().fold_with_one(
            key.as_tensor(),
            <Scalar as Numeric>::ZERO,
            |ac, s_i, o_i| ac.wrapping_add(*s_i * *o_i),
        )
    }
}

/// The body of an Lwe ciphertext.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(transparent)]
pub struct LweBody<T>(pub T);