1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//!## Summary
//! A library that provides a complete binary tree visitor trait with default implemenations for visiting strategies such as dfs_inorder or bfs, etc.
//! Some adaptors are also provided that let you map, zip, or optionally also produce the depth on every call to next().
//! It also provides two flavors of a complete binary tree data structure with mutable and immutable visitors that implement the visitor trait.
//! One laid out in bfs, and one laid out in dfs in order in memory. Both of these flavors assume that every node in the tree is the same type.
//! The visitor trait is more flexible than this, however. With the NonLeafItem associated type, users can implement a visitor for
//! tree data structures that have different types for the nonleafs and leafs.
//! 
//! This is the trait that this crate revoles around:
//!```
//!pub trait Visitor:Sized{
//!    type Item;
//!    type NonLeafItem;
//!    fn next(self)->(Self::Item,Option<(Self::NonLeafItem,Self,Self)>);
//!}
//!```
//! If you have a visitor, you can call next() on it to consume it, and produce the node it is visiting, plus
//! the children nodes. Sometimes, non leaf nodes contain additional data that does not apply to leaf nodes. This is 
//! the purpose of the NonLeafItem associated type. Users can choose to define it to be some data that only non leaf nodes provide.
//! For the two provided implementations, both leafs and nonleafs have the same time, so in those cases we just use the empty type.
//!
//! The fact that the iterator is consumed when calling next(), allows us to return mutable references without fear of the users
//! being able to create the same mutable reference some other way.
//! So this property provides a way to get mutable references to children nodes simultaneously safely. Useful for parallelizing divide and conquer style problems.
//!
//!## Goals
//!
//! To provide a useful complete binary tree visitor trait that has some similar features to the Iterator trait,
//! such as zip(), and map(), and that can be used in parallel divide and conquer style problems.
//!
//!
//!
//!## Unsafety in the provided two tree implementations
//!
//! With a regular Vec, getting one mutable reference to an element will borrow the
//! entire Vec. However the two provided trees have invariants that let us make guarentees about
//! which elements can be mutably borrowed at the same time. With the bfs tree, the children
//! for an element at index k can be found at 2k+1 and 2k+2. This means that we are guarenteed that the parent,
//! and the two children are all distinct elements and so mutable references two all of them can exist at the same time.
//! With the dfs implementation, on every call to next() we use split_at_mut() to split the current slice we have into three parts:
//! the current node, the elements ot the left, and the elements to the right.
//!
//!## Memory Locality
//!
//! Ordering the elements in dfs in order is likely better for divide and conquer style problems.
//! The main memory access pattern that we want to be fast is the following: If I have a parent, I hope to be able 
//! to access the children fast. So we want the children to be close to the parent.
//! While in bfs order, the root's children are literally right next to it, the children of nodes in the the second
//! to last level of the tree could be extremly far apart (possibly n/2 elements away!).
//! With dfs order, as you go down the tree, you gain better and better locality.

#![feature(ptr_offset_from)]
#![feature(trusted_len)]

///A complete binary tree stored in a Vec<T> laid out in bfs order.
pub mod bfs_order;
///A complete binary tree stored in a Vec<T> laid out in dfs in order.
pub mod dfs_order;


use std::collections::vec_deque::VecDeque;


///Compute the number of nodes in a complete binary tree based on a height.
#[inline(always)]
pub fn compute_num_nodes(height:usize)->usize{
    return (1 << height) - 1;
}

///Dfs in order iterator. Each call to next() will return the next element
///in dfs in order.
///Internally uses a Vec for the stack.
pub struct DfsInOrderIter<C:Visitor>{
    a:Vec<(C::Item,Option<(C::NonLeafItem,C)>)>,
    length:Option<usize>,
    min_length:usize,
    num:usize
}

impl<C:Visitor>  DfsInOrderIter<C>{

    fn add_all_lefts(stack:&mut Vec<(C::Item,Option<(C::NonLeafItem,C)>)>,node:C){
        let mut target=Some(node);
        loop{
            let (i,next) = target.take().unwrap().next();
            match next{
                Some((nl,left,right))=>{
                    let bleep=(i,Some((nl,right)));
                    stack.push(bleep);
                    target=Some(left);
                },
                None=>{
                    let bleep=(i,None);
                    stack.push(bleep);
                    break;
                }
            }
        }
    }
}

impl<C:Visitor> Iterator for DfsInOrderIter<C>{
    type Item=(C::Item,Option<C::NonLeafItem>);

    fn next(&mut self)->Option<Self::Item>{
        
        match self.a.pop(){
            Some((i,nl))=>{
                match nl{
                    Some(nl)=>{
                        let res=(i,Some(nl.0));
                        DfsInOrderIter::add_all_lefts(&mut self.a,nl.1);
                        self.num+=1;
                        Some(res)
                    },
                    None=>{
                        Some((i,None))
                    }
                }
            },
            None=>{
                None
            }
        }       
    }

    fn size_hint(&self)->(usize,Option<usize>){
        (self.min_length-self.num,self.length.map(|a|a-self.num))
    }
}


impl<C:Visitor> std::iter::FusedIterator for DfsInOrderIter<C>{}
unsafe impl<C:FixedDepthVisitor> std::iter::TrustedLen for DfsInOrderIter<C>{}
impl<C:FixedDepthVisitor> std::iter::ExactSizeIterator for DfsInOrderIter<C>{}


///Dfs preorder iterator. Each call to next() will return the next element
///in dfs order.
///Internally uses a Vec for the stack.
pub struct DfsPreOrderIter<C:Visitor>{
    a:Vec<C>,
    length:Option<usize>,
    min_length:usize,
    num:usize
}


impl<C:Visitor> std::iter::FusedIterator for DfsPreOrderIter<C>{}

unsafe impl<C:FixedDepthVisitor> std::iter::TrustedLen for DfsPreOrderIter<C>{}
impl<C:FixedDepthVisitor> std::iter::ExactSizeIterator for DfsPreOrderIter<C>{}

impl<C:Visitor> Iterator for DfsPreOrderIter<C>{
    type Item=(C::Item,Option<C::NonLeafItem>);

    fn next(&mut self)->Option<Self::Item>{
        match self.a.pop(){
            Some(x)=>{
                let (i,next)=x.next();
                let nl=match next{
                    Some((nl,left,right))=>{
                        self.a.push(right);
                        self.a.push(left);
                        Some(nl)
                    },
                    _=>{None}
                };
                self.num+=1;
                Some((i,nl))
            },
            None=>{
                None
            }
        }
    }

    fn size_hint(&self)->(usize,Option<usize>){
        (self.min_length-self.num,self.length.map(|a|a-self.num))
    }
}


///Bfs Iterator. Each call to next() returns the next
///element in bfs order.
///Internally uses a VecDeque for the queue.
pub struct BfsIter<C:Visitor>{
    a:VecDeque<C>,
    num:usize,
    min_length:usize,
    length:Option<usize>
}


impl<C:Visitor> std::iter::FusedIterator for BfsIter<C>{}
unsafe impl<C:FixedDepthVisitor> std::iter::TrustedLen for BfsIter<C>{}
impl<C:FixedDepthVisitor> std::iter::ExactSizeIterator for BfsIter<C>{}


impl<C:Visitor> Iterator for BfsIter<C>{
    type Item=(C::Item,Option<C::NonLeafItem>);
    fn next(&mut self)->Option<Self::Item>{
        let queue=&mut self.a;
        match queue.pop_front(){
            Some(e)=>{
                let (nn,rest)=e.next();
                let nl=match rest{
                    Some((nl,left,right))=>{
                        queue.push_back(left);
                        queue.push_back(right);
                        Some(nl)
                    },
                    None=>{
                        None
                    }
                };
                Some((nn,nl))
            },
            None=>{
                None
            }
        }
    }
    fn size_hint(&self)->(usize,Option<usize>){
        (self.min_length-self.num,self.length.map(|a|a-self.num))
    }
}

///Map iterator adapter
pub struct Map<C,F>{
    func:F,
    inner:C
}
impl<E,B,C:Visitor,F:Fn(C::Item,Option<C::NonLeafItem>)->(B,Option<E>)+Clone> Visitor for Map<C,F>{
    type Item=B;
    type NonLeafItem=E;

    fn next(self)->(Self::Item,Option<(Self::NonLeafItem,Self,Self)>){
        let (a,rest)=self.inner.next();
        
        match rest{
            Some((nl,left,right))=>{

                let (res,nl)=(self.func)(a,Some(nl));

                let nl=nl.unwrap();

                let ll=Map{func:self.func.clone(),inner:left};
                let rr=Map{func:self.func,inner:right};
                (res,Some((nl,ll,rr)))
            },
            None=>{
                let (res,nl)=(self.func)(a,None);
                assert!(nl.is_none());
                (res,None)
            }
        }
    }
}


///If implemented, then the level_remaining_hint must return the exact height of the tree.
///If this is implemented, then the exact number of nodes that will be returned by a dfs or bfs traversal is known
///so those iterators can implement TrustedLen in this case.
pub unsafe trait FixedDepthVisitor:Visitor{
}



///The trait this crate revoles around.
///A complete binary tree visitor.
pub trait Visitor:Sized{
    ///The common item produced for both leafs and non leafs.
    type Item;
    ///A NonLeafItem item can be returned for non leafs.
    type NonLeafItem;

    ///Consume this visitor, and produce the element it was pointing to
    ///along with it's children visitors.
    fn next(self)->(Self::Item,Option<(Self::NonLeafItem,Self,Self)>);

    ///Return the levels remaining including the one that will be produced by consuming this iterator.
    ///So if you first made this object from the root for a tree of size 5, it should return 5.
    ///Think of is as height-depth.
    ///This is used to make good allocations when doing dfs and bfs.
    ///Defaults to (0,None)
    fn level_remaining_hint(&self)->(usize,Option<usize>){
        (0,None)
    }

    ///Iterator Adapter to also produce the depth each iteration. 
    fn with_depth(self,start_depth:Depth)->LevelIter<Self>{
        LevelIter{inner:self,depth:start_depth}
    }

    ///Combine two tree visitors.
    fn zip<F:Visitor>(self,f:F)->Zip<Self,F>{
        Zip{a:self,b:f}
    }

    ///Map iterator adapter
    fn map<B,E,F:Fn(Self::Item,Option<Self::NonLeafItem>)->(B,Option<E>)>(self,func:F)->Map<Self,F>{
        Map{func,inner:self}
    }

    ///Provides an iterator that returns each element in bfs order.
    fn bfs_iter(self)->BfsIter<Self>{
        let (levels,max_levels)=self.level_remaining_hint();
        
        //Need enough room to fit all the leafs in the queue at once, of which there are n/2.
        let cap=(2u32.pow(levels as u32))/2;
        let mut a=VecDeque::with_capacity(cap as usize);
        
        let min_length=2usize.pow(levels as u32)-1;
        
        let length=max_levels.map(|max_levels|2usize.pow(max_levels as u32)-1);

        a.push_back(self);
        BfsIter{a,min_length,length,num:0}
    }


    ///Provides a dfs preorder iterator. Unlike the callback version,
    ///This one relies on dynamic allocation for its stack.
    fn dfs_preorder_iter(self)->DfsPreOrderIter<Self>{
        
        let (levels,max_levels)=self.level_remaining_hint();
        let mut a=Vec::with_capacity(levels);
        //let level_hint=self.level_remaining_hint();
        
        a.push(self);
        
        let min_length=2usize.pow(levels as u32)-1;
        let length=max_levels.map(|levels_max|2usize.pow(levels_max as u32)-1);
        DfsPreOrderIter{a,length,min_length,num:0}
    }

    fn dfs_inorder_iter(self)->DfsInOrderIter<Self>{
        
        let (levels,max_levels)=self.level_remaining_hint();
        let mut a=Vec::with_capacity(levels);

        let length=max_levels.map(|levels_max|2usize.pow(levels_max as u32)-1);

        let min_length=2usize.pow(levels as u32)-1;
        
        DfsInOrderIter::add_all_lefts(&mut a,self);

        DfsInOrderIter{a,min_length,length,num:0}
    }

    ///Calls the closure in dfs preorder (root,left,right).
    ///Takes advantage of the callstack to do dfs.
    fn dfs_preorder(self,mut func:impl FnMut(Self::Item,Option<Self::NonLeafItem>)){
        fn rec<C:Visitor>(a:C,func:&mut impl FnMut(C::Item,Option<C::NonLeafItem>)){
            
            let (nn,rest)=a.next();
            
            match rest{
                Some((nl,left,right))=>{
                    func(nn,Some(nl));
                    rec(left,func);
                    rec(right,func);
                },
                None=>{
                    func(nn,None)
                }
            }
        }
        rec(self,&mut func);
    }


    ///Calls the closure in dfs preorder (left,right,root).
    ///Takes advantage of the callstack to do dfs.
    fn dfs_inorder(self,mut func:impl FnMut(Self::Item,Option<Self::NonLeafItem>)){
        fn rec<C:Visitor>(a:C,func:&mut impl FnMut(C::Item,Option<C::NonLeafItem>)){
            
            let (nn,rest)=a.next();
            
            match rest{
                Some((nl,left,right))=>{
                    rec(left,func);
                    func(nn,Some(nl));
                    rec(right,func);
                },
                None=>{
                    func(nn,None);
                }
            }
        }
        rec(self,&mut func);
    }
}

///Tree visitor that zips up two seperate visitors.
///If one of the iterators returns None for its children, this iterator will return None.
pub struct Zip<T1:Visitor,T2:Visitor>{
    a:T1,
    b:T2,
}


impl<T1:Visitor,T2:Visitor> Visitor for Zip<T1,T2>{
    type Item=(T1::Item,T2::Item);
    type NonLeafItem=(T1::NonLeafItem,T2::NonLeafItem);

    #[inline(always)]
    fn next(self)->(Self::Item,Option<(Self::NonLeafItem,Self,Self)>){
        let (a_item,a_rest)=self.a.next();
        let (b_item,b_rest)=self.b.next();

        let item=(a_item,b_item);
        match (a_rest,b_rest){
            (Some(a_rest),Some(b_rest))=>{
                //let b_rest=b_rest.unwrap();
                let f1=Zip{a:a_rest.1,b:b_rest.1};
                let f2=Zip{a:a_rest.2,b:b_rest.2};
                (item,Some(((a_rest.0,b_rest.0),f1,f2)))
            },
            _ =>{
                (item,None)
            }
        }
    }
}


#[derive(Copy,Clone)]
///A level descriptor.
pub struct Depth(pub usize);


///A wrapper iterator that will additionally return the depth of each element.
pub struct LevelIter<T>{
    pub inner:T,
    pub depth:Depth
}

impl<T:Visitor> Visitor for LevelIter<T>{
    type Item=(Depth,T::Item);
    type NonLeafItem=T::NonLeafItem;
    #[inline(always)]
    fn next(self)->(Self::Item,Option<(Self::NonLeafItem,Self,Self)>){
        let LevelIter{inner,depth}=self;
        let (nn,rest)=inner.next();

        let r=(depth,nn);
        match rest{
            Some((nl,left,right))=>{
                let ln=Depth(depth.0+1);
                let ll=LevelIter{inner:left,depth:ln};
                let rr=LevelIter{inner:right,depth:ln};
                (r,Some((nl,ll,rr)))
            },
            None=>{
                (r,None)
            }
        }
    }

}