1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
/// A BinaryVector MAY consist of multiple sections.  Each section can represent
/// potentially different encoding parameters (bit widths, sparsity, etc.) and
/// has its own header to allow for quickly skipping ahead even when different
/// sections are encoded differently.   Or, one section may represent null data.
///
/// There are two varieties of sections represented.  See `SectionWriter` for variable-sized
/// sections, and see `FixedSection` for constant-length (number of elements) sections.
///
/// The code uses Scroll to ensure efficient encoding but one that works across platforms and endianness.
use crate::error::CodingError;
use crate::nibblepacking;
use crate::nibblepack_simd;
use crate::sink::*;

use std::cmp::Ordering;
use core::marker::PhantomData;
use std::ops::{Add, BitXor};
use std::convert::TryFrom;

use enum_dispatch::enum_dispatch;
use num::{PrimInt, Unsigned, Num, Bounded, Float};
use num_enum::{TryFromPrimitive, TryFromPrimitiveError};
use packed_simd::{u32x8, u64x8, f32x8};
use scroll::{ctx, Endian, Pread, Pwrite, LE};


/// For FixedSections this represents the first (and maybe only) byte of the section.
/// For SectionHeader based sections this is the byte at offset 4 into the header.
/// FixedSections are generic, they do not contain type information which is in the vector type.
#[repr(u8)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TryFromPrimitive)]
pub enum SectionType {
    Null = 0,                 // FIXED_LEN unavailable or null elements in a row
    NibblePackedMedium = 1,   // Nibble-packed u64/u32's, total size < 64KB
    DeltaNPMedium      = 3,   // Nibble-packed u64/u32's, delta encoded, total size < 64KB
    Constant           = 5,   // Constant value section
    XorNPMedium        = 6,   // XORed f64/f32, NibblePacked, total size < 64KB
}

impl From<TryFromPrimitiveError<SectionType>> for CodingError {
    fn from(err: TryFromPrimitiveError<SectionType>) -> CodingError {
        CodingError::InvalidSectionType(err.number)
    }
}

impl SectionType {
    pub fn as_num(self) -> u8 { self as u8 }
}

// This is a royal pain that Scroll cannot derive codecs for simple enums.  :/
impl<'a> ctx::TryFromCtx<'a, Endian> for SectionType {
  type Error = scroll::Error;
  fn try_from_ctx (src: &'a [u8], ctx: Endian) -> Result<(SectionType, usize), Self::Error> {
      u8::try_from_ctx(src, ctx).and_then(|(n, bytes)| {
          SectionType::try_from(n).map(|s| (s, bytes))
              .map_err(|e| scroll::Error::Custom(format!("InvalidSectionType {:?}", e.number)))
      })
  }
}

impl ctx::TryIntoCtx<Endian> for &SectionType {
    type Error = scroll::Error;
    fn try_into_ctx(self, buf: &mut [u8], ctx: Endian) -> Result<usize, Self::Error> {
        u8::try_into_ctx(self.as_num(), buf, ctx)
    }
}


/// `SectionHeader` represents FiloDB-style HistogramColumn sections.  Each section has a 5-byte header that
/// encapsulates number of bytes, number of elements, and the section type.  The idea is that sections can
/// denote different encodings, and be large enough to allow quick skipping over elements for faster access.
/// In FiloDB sections also denote things like counter drops/resets, which could also be implemented.
#[derive(Copy, Clone, Debug, PartialEq, Pread, Pwrite)]
pub struct SectionHeader {
    num_bytes: u16,         // Number of bytes in section after this header
    num_elements: u16,      // Number of elements.
    typ: SectionType,
}

/// Result: (bytes_written, elements_written)
type CodingResult = Result<(u16, u16), CodingError>;

/// SectionWriter stores state for active writing of multiple SectionHeader-based sections in a vector.
/// It manages rollover from one section to another when there's not enough space.
/// The main API is `add_64kb` which uses a closure to fill in section contents without copying.
///
/// Example which adds 8 0xff elements and returns an error if there isn't enough space:
/// ```
/// # use compressed_vec::section::*;
/// # use compressed_vec::error::CodingError;
/// let mut buf = [0u8; 1024];
/// let mut writer = SectionWriter::new(&mut buf, 256);
/// let res = writer.add_64kb(SectionType::Null, |writebuf: &mut [u8], _| {
///     if writebuf.len() < 8 { Err(CodingError::NotEnoughSpace) }
///     else {
///         for n in 0..8 { writebuf[n] = 0xff; }
///         Ok((8, 8))
///     }
/// });
/// ```
#[derive(Debug)]
pub struct SectionWriter<'a> {
    write_buf: &'a mut [u8],     // Be sure length is total capacity to write
    cur_pos: usize,              // Current write position within buffer
    cur_header_pos: usize,       // Buffer position of current section header
    max_elements_per_sect: u16,  // Max # elements within a single section
    cur_header: SectionHeader
}

impl<'a> SectionWriter<'a> {
    /// Default constructor given mutable buffer and initial position of 0
    pub fn new(buf: &'a mut [u8], max_elements_per_sect: u16) -> Self {
        Self { write_buf: buf,
               cur_pos: 0,     // 0 means no section initialized
               cur_header_pos: 0,
               max_elements_per_sect,
               cur_header: SectionHeader { num_bytes: 0, num_elements: 0, typ: SectionType::Null }
        }
    }

    pub fn cur_pos(&self) -> usize { self.cur_pos }

    fn init_new_section(&mut self, sect_type: SectionType) -> CodingResult {
        self.cur_header.num_bytes = 0;
        self.cur_header.num_elements = 0;
        self.cur_header.typ = sect_type;
        self.cur_header_pos = self.cur_pos;
        let (bytes_written, _) = self.update_sect_header()?;
        self.cur_pos += bytes_written as usize;
        Ok((bytes_written, 0))
    }

    fn update_sect_header(&mut self) -> CodingResult {
        let bytes_written = self.write_buf.pwrite_with(self.cur_header, self.cur_header_pos, LE)?;
        Ok((bytes_written as u16, 0))
    }

    /// Adds an "element" by filling in mutable buffer up to 64KB in length.
    /// Method advances to a new section if necessary.
    /// Closure must be passed which is given &mut [u8] and returns WriteTaskResult.
    /// The filler returns how many bytes, elements were written - this accommodates variable-length encoding.
    /// If given slice is not large enough, then method may advance to next section
    /// which should give more room to grow.
    /// sect_type is used to fill in new section
    pub fn add_64kb<F>(&mut self, sect_type: SectionType, filler: F) -> CodingResult
        where F: Fn(&mut [u8], usize) -> CodingResult
    {
        // If buffer empty / no section initialized, go ahead initialize it
        if self.cur_pos == 0 { self.init_new_section(sect_type)?; }

        let elements_left = self.max_elements_per_sect - self.cur_header.num_elements;
        // Smaller of how much left in section vs how much left in input buffer
        let bytes_left = std::cmp::min(65535 - self.cur_header.num_bytes as usize,
                                       self.write_buf.len() - self.cur_pos);

        // Call filler func once.  If not enough space, try to allocate new section before giving up
        let writable_bytes = &mut self.write_buf[self.cur_pos..self.cur_pos + bytes_left];
        let filled_res = filler(writable_bytes, elements_left as usize);
        match filled_res {
            Ok((bytes_written, elements_written)) => {
                assert!(elements_written <= elements_left);
                // Update section header as well as other internal pointers
                self.cur_header.num_bytes += bytes_written;
                self.cur_header.num_elements += elements_written;
                self.cur_pos += bytes_written as usize;

                self.update_sect_header()?;
                Ok((bytes_written, elements_written))
            },
            Err(CodingError::NotEnoughSpace) => {
                // Try to write a new section
                self.init_new_section(sect_type)?;

                // Now try writing again
                self.add_64kb(sect_type, filler)
            }
            e @ Err(_) => return e,
        }
    }
}

// This should really be 256 for SIMD query filtering purposes.
// Don't adjust this unless you know what you're doing
pub const FIXED_LEN: usize = 256;

/// A FixedSection is a section with a fixed number of elements.
/// Thus a compressed vector could be made of a number of FixedSections.
/// Currently the implementation is tied to 256 elements.
///
/// Each section begins with a 1-byte SectionType enum, after which each one defines its own format.
///
/// NOTE: To avoid needing to box trait implementations for things like `FixedSectIterator`, we
/// use [enum_dispatch](https://docs.rs/enum_dispatch/0.2.2/enum_dispatch/); methods can be called on
/// `FixedSectEnum` and `try_into()` used to convert back to original values.
///
#[enum_dispatch]
pub trait FixedSection {
    /// The number of bytes total in this section including the section type header byte
    fn num_bytes(&self) -> usize;
    fn num_elements(&self) -> usize { FIXED_LEN }

    /// Return the byte slice corresponding to section bytes, if available
    fn sect_bytes(&self) -> Option<&[u8]>;

    /// Returns the section type
    fn sect_type(&self) -> SectionType;
}

/// A FixedSectEnum is an enum over different FixedSection implementations, for the purpose of very fast,
/// inlineable iteration over different section types without resorting to dynamic method calls.
#[enum_dispatch(FixedSection)]
#[derive(Debug, PartialEq)]
pub enum FixedSectEnum<'buf, T: VectBase> {
    NullFixedSect,
    NibblePackMedFixedSect(NibblePackMedFixedSect<'buf, T>),
    DeltaNPMedFixedSect(DeltaNPMedFixedSect<'buf, T>),
    ConstFixedSect(ConstFixedSect<'buf, T>),
    XorNPMedFixedSect(XorNPMedFixedSect<'buf>),
}

impl<'buf, T: VectBase> FixedSectEnum<'buf, T> {
    /// Decodes this section based on items of type T to a Sink.  This is the main decoding API.
    /// Note that you need to specify an explicit base type as FixedSectEnums are typeless.
    /// For example, to write to the generic section sink which materializes every value in a section:
    /// ```
    /// # use compressed_vec::section::{FixedSectEnum, SectionType};
    /// # use std::convert::TryFrom;
    /// # let mut sect_bytes = [0u8; 256];
    /// # sect_bytes[0] = SectionType::NibblePackedMedium.as_num();
    /// # sect_bytes[1] = 253;
    ///     let sect = FixedSectEnum::<u32>::try_from(&sect_bytes[..]).unwrap();
    ///     let mut sink = compressed_vec::sink::U32_256Sink::new();
    ///     sect.decode(&mut sink).unwrap();
    ///     println!("{:?}", sink.values.iter().count());
    /// ```
    #[inline]
    pub fn decode<S>(self, sink: &mut S) -> Result<(), CodingError>
    where S: Sink<T::SI> {
        T::Utils::decode_to_sink(self, sink)
    }

    /// Is this a null section?
    #[inline]
    pub fn is_null(&self) -> bool {
        match self {
            FixedSectEnum::NullFixedSect(_) => true,
            _ => false,
        }
    }
}

impl<'buf, T: VectBase> TryFrom<&'buf [u8]> for FixedSectEnum<'buf, T> {
    type Error = CodingError;
    /// Tries to extract a FixedSection from a slice, whose first byte contains the section type byte.
    /// The length of the slice should contain at least all the data in the section.
    fn try_from(s: &'buf [u8]) -> Result<FixedSectEnum<'buf, T>, CodingError> {
        if s.len() <= 0 { return Err(CodingError::InputTooShort) }
        let sect_type = SectionType::try_from(s[0])?;
        match sect_type {
            SectionType::Null => Ok((NullFixedSect {}).into()),
            SectionType::NibblePackedMedium =>
                NibblePackMedFixedSect::try_from(s).map(|sect| sect.into()),
            SectionType::DeltaNPMedium =>
                DeltaNPMedFixedSect::try_from(s).map(|sect| sect.into()),
            SectionType::Constant =>
                ConstFixedSect::try_from(s).map(|sect| sect.into()),
            SectionType::XorNPMedium =>
                XorNPMedFixedSect::try_from(s).map(|sect| sect.into()),
        }
    }
}

/// Reader trait for FixedSections, has some common methods for iteration and extraction of values
pub trait FixedSectReader<T: VectBase>: FixedSection {
    /// Decodes values from this section to a sink.
    /// This is the most generic method of processing data from a section.
    /// For example, to get an iterator out:
    /// ```
    /// # use compressed_vec::section::{FixedSectReader, NibblePackMedFixedSect};
    /// # use compressed_vec::nibblepack_simd;
    /// # let mut sect_bytes = [0u8; 256];
    /// # sect_bytes[1] = 253;
    ///     let sect = NibblePackMedFixedSect::<u32>::try_from(&sect_bytes[..]).unwrap();
    ///     let mut sink = compressed_vec::sink::U32_256Sink::new();
    ///     sect.decode_to_sink(&mut sink).unwrap();
    ///     println!("{:?}", sink.values.iter().count());
    /// ```
    fn decode_to_sink<Output>(&self, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<T::SI>;
}

/// Utility trait for FixedSectReader/Writers, to help:
/// - map FixedSectReader from a FixedSectEnum
/// - for a const byte width
/// - connect generic section implementations to type-specific methods such as Scroll pread/write
pub trait FSUtils<T: VectBase> {
    const BYTE_WIDTH: usize;
    fn decode_to_sink<Output>(e: FixedSectEnum<T>, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<T::SI>;

    /// Read a primitive T from a buffer at an offset, little-endian
    fn read_le_offset<'a>(buf: &'a [u8], offset: usize) -> Result<T, scroll::Error>;

    /// Write a primitive T to a buffer at an offset, little-endian
    fn write_le_offset<'a>(buf: &'a mut [u8], offset: usize, value: T) -> Result<usize, scroll::Error>;

    /// Generic: decoding to sink method for a single encoded NibblePacked 8 octets of data
    fn nibblepack_decode<'a, S: Sink<T::SI>>(buf: &'a [u8], sink: &mut S) -> Result<&'a [u8], CodingError>;
}

pub struct FSUtilsMarker {}

impl<'buf> FSUtils<u32> for FSUtilsMarker {
    const BYTE_WIDTH: usize = 4;

    #[inline]
    fn decode_to_sink<Output>(e: FixedSectEnum<u32>, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<u32x8> {
        match e {
            FixedSectEnum::NullFixedSect(nfs) => FixedSectReader::<u32>::decode_to_sink(&nfs, output),
            FixedSectEnum::NibblePackMedFixedSect(fs) => fs.decode_to_sink(output),
            FixedSectEnum::DeltaNPMedFixedSect(fs)    => fs.decode_to_sink(output),
            FixedSectEnum::ConstFixedSect(cs)         => cs.decode_to_sink(output),
            _ => Err(CodingError::InvalidFormat(format!("Section {:?} invalid for u32", e))),
        }
    }

    #[inline]
    fn read_le_offset<'a>(buf: &'a [u8], offset: usize) -> Result<u32, scroll::Error> {
        buf.pread_with(offset, LE)
    }

    #[inline]
    fn write_le_offset<'a>(buf: &'a mut [u8], offset: usize, value: u32) -> Result<usize, scroll::Error> {
        buf.pwrite_with(value, offset, LE)
    }

    #[inline]
    fn nibblepack_decode<'a, S: Sink<u32x8>>(buf: &'a [u8], sink: &mut S) -> Result<&'a [u8], CodingError> {
        nibblepack_simd::unpack8_u32_simd(buf, sink)
    }
}

impl<'buf> FSUtils<u64> for FSUtilsMarker {
    const BYTE_WIDTH: usize = 8;

    #[inline]
    fn decode_to_sink<Output>(e: FixedSectEnum<u64>, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<u64x8> {
        match e {
            FixedSectEnum::NullFixedSect(nfs) => FixedSectReader::<u64>::decode_to_sink(&nfs, output),
            FixedSectEnum::NibblePackMedFixedSect(fs) => fs.decode_to_sink(output),
            FixedSectEnum::DeltaNPMedFixedSect(fs)    => fs.decode_to_sink(output),
            FixedSectEnum::ConstFixedSect(cs)         => cs.decode_to_sink(output),
            _ => Err(CodingError::InvalidFormat(format!("Section {:?} invalid for u64", e))),
        }
    }

    #[inline]
    fn read_le_offset<'a>(buf: &'a [u8], offset: usize) -> Result<u64, scroll::Error> {
        buf.pread_with(offset, LE)
    }

    #[inline]
    fn write_le_offset<'a>(buf: &'a mut [u8], offset: usize, value: u64) -> Result<usize, scroll::Error> {
        buf.pwrite_with(value, offset, LE)
    }

    #[inline]
    fn nibblepack_decode<'a, S: Sink<u64x8>>(buf: &'a [u8], sink: &mut S) -> Result<&'a [u8], CodingError> {
        nibblepacking::nibble_unpack8(buf, sink)
    }
}

impl<'buf> FSUtils<f32> for FSUtilsMarker {
    const BYTE_WIDTH: usize = 4;

    #[inline]
    fn decode_to_sink<Output>(e: FixedSectEnum<f32>, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<f32x8> {
        match e {
            FixedSectEnum::NullFixedSect(nfs)    => FixedSectReader::<f32>::decode_to_sink(&nfs, output),
            FixedSectEnum::ConstFixedSect(cs)    => cs.decode_to_sink(output),
            FixedSectEnum::XorNPMedFixedSect(fs) => fs.decode_to_sink(output),
            _ => Err(CodingError::InvalidFormat(format!("Section {:?} invalid for f32", e))),
        }
    }

    #[inline]
    fn read_le_offset<'a>(buf: &'a [u8], offset: usize) -> Result<f32, scroll::Error> {
        buf.pread_with(offset, LE)
    }

    #[inline]
    fn write_le_offset<'a>(buf: &'a mut [u8], offset: usize, value: f32) -> Result<usize, scroll::Error> {
        buf.pwrite_with(value, offset, LE)
    }

    #[inline]
    fn nibblepack_decode<'a, S: Sink<f32x8>>(_buf: &'a [u8], _sink: &mut S) -> Result<&'a [u8], CodingError> {
        unimplemented!()
    }
}


/// This is a base trait to tie together SinkInput, FSUtils, and other types.
/// Many other structs such as VectorReader and Filter structs will take VectBase as a base type.
/// Choose the base type for your vector - u32, u64 etc.  This should be same type used in Appender as well as
/// readers, filters, etc.
pub trait VectBase: Num + Bounded + PartialOrd + Copy + std::fmt::Debug {
    type SI: SinkInput<Item = Self> + Add<Self::SI, Output = Self::SI>;
    type Utils: FSUtils<Self>;
}

impl VectBase for u32 {
    type SI = u32x8;
    type Utils = FSUtilsMarker;
}

impl VectBase for u64 {
    type SI = u64x8;
    type Utils = FSUtilsMarker;
}

impl VectBase for f32 {
    type SI = f32x8;
    type Utils = FSUtilsMarker;
}


/// A NullFixedSect are 256 "Null" or 0 elements.
/// For dictionary encoding they represent missing or Null values.
/// Its binary representation consists solely of a SectionType::Null byte.
#[derive(Debug, PartialEq)]
pub struct NullFixedSect {}

impl NullFixedSect {
    /// Writes out marker for null section, just one byte.  Returns offset+1 unless
    /// there isn't room or offset is invalid.
    pub fn write(out_buf: &mut [u8], offset: usize) -> Result<usize, CodingError> {
        out_buf.pwrite_with(SectionType::Null.as_num(), offset, LE)?;
        Ok(offset + 1)
    }
}

impl FixedSection for NullFixedSect {
    fn num_bytes(&self) -> usize { 1 }
    fn sect_bytes(&self) -> Option<&[u8]> { None }
    fn sect_type(&self) -> SectionType { SectionType::Null }
}

impl<T: VectBase> FixedSectReader<T> for NullFixedSect {
    #[inline]
    fn decode_to_sink<Output>(&self, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<T::SI> {
        for _ in 0..FIXED_LEN/8 {
            output.process_zeroes();
        }
        Ok(())
    }
}

/// Statistics on data to be written by a FixedSectionWriter
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct SectionWriterStats<T: VectBase> {
    min: T,
    max: T,
}

impl<T: VectBase> SectionWriterStats<T> {
    // For SectionWriterStats we don't care about NaNs as they won't be optimized anyways for compression
    // TODO: make optimized Ord-based comparisons, use a trait etc
    pub fn from_vect(vect: &[T]) -> Self {
        Self { min: *vect.iter()
                         .min_by(|&a, &b| a.partial_cmp(b).unwrap_or(Ordering::Equal))
                         .unwrap_or(&T::zero()),
               max: *vect.iter()
                         .max_by(|&a, &b| a.partial_cmp(b).unwrap_or(Ordering::Equal))
                         .unwrap_or(&T::zero()) }
    }

    #[inline]
    pub fn range(&self) -> T {
        self.max - self.min
    }
}

impl<T: VectBase + PrimInt> SectionWriterStats<T> {
    #[inline]
    pub fn num_bits_range(&self) -> u8 {
        (T::Utils::BYTE_WIDTH * 8) as u8 - self.range().leading_zeros() as u8
    }

    #[inline]
    pub fn num_bits_max(&self) -> u8 {
        (T::Utils::BYTE_WIDTH * 8) as u8 - self.max.leading_zeros() as u8
    }
}

/// A trait for FixedSection writers of a particular type
pub trait FixedSectionWriter<T: VectBase> {
    /// Writes out/encodes a fixed section given input values of a particular type, starting at a given offset
    /// into the destination buffer.  Stats on the values are needed.
    /// Returns the new offset after writing succeeds.
    fn write(out_buf: &mut [u8],
             offset: usize,
             values: &[T],
             stats: SectionWriterStats<T>) -> Result<usize, CodingError>;

    /// Convenience method to compute the stats automatically and call write
    #[inline]
    fn gen_stats_and_write(out_buf: &mut [u8], offset: usize, values: &[T]) -> Result<usize, CodingError> {
        let stats = SectionWriterStats::from_vect(values);
        Self::write(out_buf, offset, values, stats)
    }
}

/// A FixedSection which is: NP=NibblePack'ed, u64/u32 elements, Medium sized (<64KB)
/// Binary layout (all offsets are from start of section/type byte)
///  +0   SectionType::NibblePackedMedium
///  +1   2-byte LE size of NibblePack-encoded bytes to follow
///  +3   NibblePack-encoded 256 u64 elements
#[derive(Debug, PartialEq, Copy, Clone)]
pub struct NibblePackMedFixedSect<'buf, T: VectBase> {
    sect_bytes: &'buf [u8],
    encoded_bytes: u16,   // This is a separate field as sect_bytes might extend beyond end of section
                          // for performance reasons.  It is faster to be able to read beyond end
    _type: PhantomData<T>,
}

impl<'buf, T: VectBase> NibblePackMedFixedSect<'buf, T> {
    /// Tries to create a new NibblePackU64MedFixedSect from a byte slice starting from the first
    /// section type byte of the section.  Byte slice should be as large as the length bytes indicate.
    pub fn try_from(sect_bytes: &'buf [u8]) -> Result<NibblePackMedFixedSect<T>, CodingError> {
        let encoded_bytes = sect_bytes.pread_with(1, LE)
                                .and_then(|n| {
                                    if (n + 3) <= sect_bytes.len() as u16 { Ok(n) }
                                    else { Err(scroll::Error::Custom("Slice not large enough".to_string())) }
                                })?;
        Ok(Self { sect_bytes, encoded_bytes, _type: PhantomData })
    }
}

impl<'buf, T: VectBase> FixedSectReader<T> for NibblePackMedFixedSect<'buf, T> {
    #[inline]
    fn decode_to_sink<Output>(&self, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<T::SI> {
        let mut values_left = FIXED_LEN;
        let mut inbuf = &self.sect_bytes[3..];
        while values_left > 0 {
            inbuf = T::Utils::nibblepack_decode(inbuf, output)?;
            values_left -= 8;
        }
        Ok(())
    }
}

impl<'buf, T: VectBase> FixedSection for NibblePackMedFixedSect<'buf, T> {
    fn num_bytes(&self) -> usize { self.encoded_bytes as usize + 3 }
    fn sect_bytes(&self) -> Option<&[u8]> { Some(self.sect_bytes) }
    fn sect_type(&self) -> SectionType { SectionType::NibblePackedMedium }
}

impl<'buf, T> FixedSectionWriter<T> for NibblePackMedFixedSect<'buf, T>
where T: PrimInt + Unsigned + VectBase + num::cast::AsPrimitive<u64> {
    /// Writes out a fixed NibblePacked medium section, including correct length bytes,
    /// performing NibblePacking in the meantime.  Note: length value will be written last.
    /// Only after the write succeeds should vector metadata such as length/num bytes be updated.
    /// Returns the final offset after last bytes written.
    fn write(out_buf: &mut [u8],
             offset: usize,
             values: &[T],
             _s: SectionWriterStats<T>) -> Result<usize, CodingError> {
        assert_eq!(values.len(), FIXED_LEN);
        out_buf.pwrite_with(SectionType::NibblePackedMedium.as_num(), offset, LE)?;
        let off = nibblepacking::pack_u64(values.iter().map(|&x| x.as_()),
                                          out_buf,
                                          offset + 3)?;
        let num_bytes = off - offset - 3;
        if num_bytes <= 65535 {
            out_buf.pwrite_with(num_bytes as u16, offset + 1, LE)?;
            Ok(off)
        } else {
            Err(CodingError::NotEnoughSpace)
        }
    }
}


/// A FixedSection which is: NP=NibblePack'ed, Medium sized (<64KB), Delta encoded
/// Binary layout (all offsets are from start of section/type byte)
///  +0   SectionType::DeltaNPMedium
///  +1   2-byte LE size of NibblePack-encoded bytes to follow after this header
///  +3   u8: number of bits needed by largest delta
///  +4   u64: base u64 value
///  +12   NibblePack-encoded 256 u64 deltas
#[derive(Debug, PartialEq, Copy, Clone)]
pub struct DeltaNPMedFixedSect<'buf, T>
where T: VectBase {
    sect_bytes: &'buf [u8],
    encoded_bytes: u16,   // This is a separate field as sect_bytes might extend beyond end of section
                          // for performance reasons.  It is faster to be able to read beyond end
    base: T,              // base value from which deltas are added
    delta_numbits: u8,    // max number of bits needed for deltas.  Can be used to compute max
}

const DELTA_NP_SECT_HEADER_SIZE: usize = 12;

impl<'buf, T> DeltaNPMedFixedSect<'buf, T>
where T: VectBase {
    /// Tries to create a new DeltaNPMedFixedSect from a byte slice starting from the first
    /// section type byte of the section.  Byte slice should be as large as the length bytes indicate.
    pub fn try_from(sect_bytes: &'buf [u8]) -> Result<Self, CodingError> {
        let encoded_bytes = sect_bytes.pread_with(1, LE)
                                .and_then(|n| {
                                    if (n + DELTA_NP_SECT_HEADER_SIZE as u16) <= sect_bytes.len() as u16 { Ok(n) }
                                    else { Err(scroll::Error::Custom("Slice not large enough".to_string())) }
                                })?;
        let base: T = T::Utils::read_le_offset(sect_bytes, 4)?;
        let delta_numbits: u8 = sect_bytes[3];
        Ok(Self { sect_bytes, encoded_bytes, base, delta_numbits })
    }

    /// Returns the max range of deltas (rounded up to 2^n) using delta_numbits
    pub fn delta_range(&self) -> u64 {
        2u64.pow(self.delta_numbits as u32)
    }
}

impl<'buf, T> FixedSectReader<T> for DeltaNPMedFixedSect<'buf, T>
where T: PrimInt + Unsigned + VectBase {
    #[inline]
    fn decode_to_sink<Output>(&self, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<T::SI> {
        let mut values_left = FIXED_LEN;
        let mut inbuf = &self.sect_bytes[DELTA_NP_SECT_HEADER_SIZE..];
        let mut delta_sink = AddConstSink::new(self.base, output);
        while values_left > 0 {
            inbuf = T::Utils::nibblepack_decode(inbuf, &mut delta_sink)?;
            values_left -= 8;
        }
        Ok(())
    }
}

impl<'buf, T> FixedSectionWriter<T> for DeltaNPMedFixedSect<'buf, T>
where T: PrimInt + Unsigned + VectBase + num::cast::AsPrimitive<u64> {
    /// Writes out a delta-encoded NibblePacked section.
    /// Returns the final offset after last bytes written.
    fn write(out_buf: &mut [u8],
             offset: usize,
             values: &[T],
             stats: SectionWriterStats<T>) -> Result<usize, CodingError> {
        assert_eq!(values.len(), FIXED_LEN);
        out_buf.pwrite_with(SectionType::DeltaNPMedium.as_num(), offset, LE)?;
        let off = nibblepacking::pack_u64(values.iter().map(|&x| (x - stats.min).as_()),
                                          out_buf,
                                          offset + DELTA_NP_SECT_HEADER_SIZE)?;
        let num_bytes = off - offset - DELTA_NP_SECT_HEADER_SIZE;
        if num_bytes <= 65535 {
            out_buf.pwrite_with(num_bytes as u16, offset + 1, LE)?;
            T::Utils::write_le_offset(out_buf, offset + 4, stats.min)?;
            out_buf[offset + 3] = stats.num_bits_range();
            Ok(off)
        } else {
            Err(CodingError::NotEnoughSpace)
        }
    }
}

impl<'buf, T> FixedSection for DeltaNPMedFixedSect<'buf, T>
where T: VectBase {
    fn num_bytes(&self) -> usize { self.encoded_bytes as usize + DELTA_NP_SECT_HEADER_SIZE }
    fn sect_bytes(&self) -> Option<&[u8]> { Some(self.sect_bytes) }
    fn sect_type(&self) -> SectionType { SectionType::DeltaNPMedium }
}

/// A Floating Point section encoded by XORing successive octets, then NibblePacking the result.
/// Designed for fast SIMD decoding.
/// For layout details, please refer to vector_format.md
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct XorNPMedFixedSect<'buf> {
    sect_bytes: &'buf [u8],
    total_bytes: u16,     // This is a separate field as sect_bytes might extend beyond end of section
                          // for performance reasons.  It is faster to be able to read beyond end
}

impl<'buf> XorNPMedFixedSect<'buf> {
    /// Tries to create a new XorNPMedFixedSect from a byte slice starting from the first
    /// section type byte of the section.  Byte slice should be as large as the length bytes indicate.
    pub fn try_from(sect_bytes: &'buf [u8]) -> Result<Self, CodingError> {
        let total_bytes = sect_bytes.pread_with(1, LE)
                                .and_then(|n| {
                                    if n <= sect_bytes.len() as u16 { Ok(n) }
                                    else { Err(scroll::Error::Custom("Slice not large enough".to_string())) }
                                })?;
        Ok(Self { sect_bytes, total_bytes })
    }
}

impl<'buf> FixedSectReader<f32> for XorNPMedFixedSect<'buf> {
    #[inline]
    fn decode_to_sink<Output>(&self, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<f32x8> {
        let mut values_left = FIXED_LEN;
        let mut inbuf = &self.sect_bytes[3..];
        let mut xor_sink = XorSink::<'_, f32, u32, _>::new(output);
        while values_left > 0 {
            inbuf = nibblepack_simd::unpack8_u32_simd(inbuf, &mut xor_sink)?;
            values_left -= 8;
        }
        Ok(())
    }
}

impl<'buf, T: VectBase + Float> FixedSectionWriter<T> for XorNPMedFixedSect<'buf> {
    /// Writes out floating point values whose bits are XORed and NibblePacked.
    /// Returns the final offset after last bytes written.
    fn write(out_buf: &mut [u8],
             offset: usize,
             values: &[T],
             stats: SectionWriterStats<T>) -> Result<usize, CodingError> {
        assert_eq!(values.len(), FIXED_LEN);
        if stats.min == stats.max {
            if stats.min == T::zero() {
                // All 0's, write out a null section
                NullFixedSect::write(out_buf, offset)
            } else {
                // Constant section
                ConstFixedSect::write(out_buf, offset, values, stats)
            }
        } else {
            out_buf.pwrite_with(SectionType::XorNPMedium.as_num(), offset, LE)?;

            // Start with all 0's u32/u64's.  Then, XOR each new octet, replacing the last ones done.
            let mut last_bits = u64x8::splat(0);
            let mut off = offset + 3;
            for octet in values.chunks(8) {
                // Load octet of floats into a u64x8, doing bit casting (float bits as ints)
                let octet_bits = T::SI::to_u64x8_bits(octet);
                off = nibblepack_simd::pack8_u64_simd(octet_bits.bitxor(last_bits), out_buf, off)?;
                last_bits = octet_bits;
            }

            let total_bytes = off - offset;
            if total_bytes <= 65535 {
                out_buf.pwrite_with(total_bytes as u16, offset + 1, LE)?;
                Ok(off)
            } else {
                Err(CodingError::NotEnoughSpace)
            }
        }
    }
}

impl<'buf> FixedSection for XorNPMedFixedSect<'buf> {
    fn num_bytes(&self) -> usize { self.total_bytes as usize }
    fn sect_bytes(&self) -> Option<&[u8]> { Some(self.sect_bytes) }
    fn sect_type(&self) -> SectionType { SectionType::XorNPMedium }
}

/// A Constant section represents repeating values
#[derive(Debug, PartialEq, Copy, Clone)]
pub struct ConstFixedSect<'buf, T: VectBase> {
    sect_bytes: &'buf [u8],
    value: T
}

impl<'buf, T: VectBase> ConstFixedSect<'buf, T> {
    pub fn try_from(sect_bytes: &'buf [u8]) -> Result<Self, CodingError> {
        if sect_bytes.len() >= (1 + T::Utils::BYTE_WIDTH) {
            let value = T::Utils::read_le_offset(sect_bytes, 1)?;
            Ok(Self { sect_bytes, value })
        } else {
            Err(CodingError::InputTooShort)
        }
    }

    pub fn get_value(&self) -> T { self.value }
}

impl<'buf, T: VectBase> FixedSectReader<T> for ConstFixedSect<'buf, T> {
    #[inline]
    fn decode_to_sink<Output>(&self, output: &mut Output) -> Result<(), CodingError>
        where Output: Sink<T::SI> {
        let octet = T::SI::splat(self.value);
        for _ in 0..FIXED_LEN/8 {
            output.process(octet);
        }
        Ok(())
    }
}

impl<'buf, T: VectBase> FixedSectionWriter<T> for ConstFixedSect<'buf, T> {
    fn write(out_buf: &mut [u8],
             offset: usize,
             values: &[T],
             _stats: SectionWriterStats<T>) -> Result<usize, CodingError> {
        assert_eq!(values.len(), FIXED_LEN);
        out_buf.pwrite_with(SectionType::Constant.as_num(), offset, LE)?;
        T::Utils::write_le_offset(out_buf, offset + 1, values[0])?;
        Ok(offset + 1 + T::Utils::BYTE_WIDTH)
    }
}

impl<'buf, T: VectBase> FixedSection for ConstFixedSect<'buf, T> {
    fn num_bytes(&self) -> usize { 1 + T::Utils::BYTE_WIDTH }
    fn sect_bytes(&self) -> Option<&[u8]> { Some(self.sect_bytes) }
    fn sect_type(&self) -> SectionType { SectionType::Constant }
}


/// The AutoEncoder automatically picks the optimal type of section to use based on
/// the SectionWriterStats.
/// 1. If min==max, use a Constant or Null section
/// 2. If min-max range uses less nibbles than otherwise for max, then Delta is a win.
/// 3. Otherwise use standard NibblePackMedFixedSect
pub struct AutoEncoder {}

impl<'buf, T> FixedSectionWriter<T> for AutoEncoder
where T: VectBase + PrimInt + Unsigned + num::cast::AsPrimitive<u64> {
    fn write(out_buf: &mut [u8],
             offset: usize,
             values: &[T],
             stats: SectionWriterStats<T>) -> Result<usize, CodingError> {
        if stats.min == stats.max {
            if stats.min == T::zero() {
                // All 0's, write out a null section
                NullFixedSect::write(out_buf, offset)
            } else {
                // Constant section
                ConstFixedSect::write(out_buf, offset, values, stats)
            }
        } else {
            let regular_nibbles = (stats.num_bits_max() + 3) / 4;
            let range_nibbles = (stats.num_bits_range() + 3) / 4;
            // If doing delta results in less nibbles, it will probably save space
            if range_nibbles < regular_nibbles {
                DeltaNPMedFixedSect::write(out_buf, offset, values, stats)
            } else {
                NibblePackMedFixedSect::write(out_buf, offset, values, stats)
            }
        }
    }
}


/// Iterates over a series of encoded FixedSections, basically the data of any Vector encoded as Fixed256
pub struct FixedSectIterator<'buf, T: VectBase> {
    encoded_bytes: &'buf [u8],
    _typ: PhantomData<T>,
}

impl<'buf, T: VectBase> FixedSectIterator<'buf, T> {
    pub fn new(encoded_bytes: &'buf [u8]) -> Self {
        FixedSectIterator { encoded_bytes, _typ: PhantomData }
    }
}

/// FixedSectIterator iterates over Result of FixedSectEnum.  Any decoding errors, such as trying to decode
/// a u32 section with u64 or the wrong type, for example, would result in Err(CodingError).
/// Iterates until there are no more bytes left in self.encoded_bytes.
impl<'buf, T: VectBase> Iterator for FixedSectIterator<'buf, T> {
    type Item = Result<FixedSectEnum<'buf, T>, CodingError>;
    fn next(&mut self) -> Option<Self::Item> {
        if self.encoded_bytes.is_empty() {
            None
        } else {
            let res = FixedSectEnum::try_from(self.encoded_bytes);
            if let Ok(fsreader) = &res {
                self.encoded_bytes = &self.encoded_bytes[fsreader.num_bytes()..];
            }
            Some(res)
        }
    }
}

// This is partly for perf disassembly and partly for convenience
pub fn unpack_u32_section(buf: &[u8]) -> [u32; 256] {
    let mut sink = U32_256Sink::new();
    NibblePackMedFixedSect::<u32>::try_from(buf).unwrap().decode_to_sink(&mut sink).unwrap();
    sink.values
}


#[cfg(test)]
mod tests {
    use super::*;
    use std::time::{SystemTime, UNIX_EPOCH};

    #[test]
    fn test_sectwriter_cannot_add_sect_header() {
        let mut buf = [0u8; 4];   // Too small to write a section header in!!
        let mut writer = SectionWriter::new(&mut buf, 256);

        let res = writer.add_64kb(SectionType::Null, |writebuf: &mut [u8], _| {
            if writebuf.len() < 8 { Err(CodingError::NotEnoughSpace) }
            else {
                for n in 0..8 { writebuf[n] = 0xff; }
                Ok((8, 8))
            }
        });

        assert!(res.is_err());
    }

    #[test]
    fn test_sectwriter_fill_section_normal() {
        let mut buf = [0u8; 20];
        let mut writer = SectionWriter::new(&mut buf, 256);

        let res = writer.add_64kb(SectionType::Null, |writebuf: &mut [u8], _| {
            if writebuf.len() < 8 { Err(CodingError::NotEnoughSpace) }
            else {
                for n in 0..8 { writebuf[n] = 0xff; }
                Ok((8, 8))
            }
        });

        assert_eq!(res, Ok((8, 8)));
        assert_eq!(writer.cur_pos(), 13);
    }

    #[test]
    fn test_npu64med_write_error_no_room() {
        // Allocate a buffer that's not large enough - first, no room for header
        let mut buf = [0u8; 2];  // header needs 3 bytes at least
        let data: Vec<u64> = (0..256).collect();

        let res = NibblePackMedFixedSect::gen_stats_and_write(&mut buf, 0, &data[..]);
        assert_eq!(res, Err(CodingError::NotEnoughSpace));

        // No room for all values
        let mut buf = [0u8; 100];  // Need ~312 bytes to NibblePack compress the inputs above

        let res = NibblePackMedFixedSect::gen_stats_and_write(&mut buf, 0, &data[..]);
        assert_eq!(res, Err(CodingError::NotEnoughSpace));
    }

    #[test]
    fn test_fixedsectiterator_write_and_read() {
        let mut buf = [0u8; 1024];
        let data: Vec<u64> = (0..256).collect();
        let mut off = 0;

        off = NullFixedSect::write(&mut buf, off).unwrap();
        assert_eq!(off, 1);

        off = NibblePackMedFixedSect::gen_stats_and_write(&mut buf, off, &data[..]).unwrap();

        // Now, create an iterator and collect enums.  Send only the slice of written data, no more.
        let sect_iter = FixedSectIterator::<u64>::new(&buf[0..off]);
        let sections = sect_iter.map(|x| x.unwrap()).collect::<Vec<FixedSectEnum<u64>>>();

        assert_eq!(sections.len(), 2);
        let sect = &sections[0];
        assert_eq!(sect.num_bytes(), 1);
        match sect {
            FixedSectEnum::NullFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }

        let sect = &sections[1];
        assert!(sect.num_bytes() <= sect.sect_bytes().unwrap().len());
        if let FixedSectEnum::NibblePackMedFixedSect(inner_sect) = sect {
            let mut sink = U64_256Sink::new();
            inner_sect.decode_to_sink(&mut sink).unwrap();
            assert_eq!(sink.values[..data.len()], data[..]);
        } else {
            panic!("Wrong type obtained at sections[1]")
        }
    }

    #[test]
    fn test_fixedsect_u32_write_and_decode() {
        let mut buf = [0u8; 1024];
        let data: Vec<u32> = (0..256).collect();
        let mut off = 0;

        off = NibblePackMedFixedSect::gen_stats_and_write(&mut buf, off, &data[..]).unwrap();

        let values = unpack_u32_section(&buf[..off]);
        assert_eq!(values.iter().count(), 256);
        assert_eq!(values.iter().map(|&x| x).collect::<Vec<u32>>(), data);
    }

    #[test]
    fn test_delta_write_and_decode() {
        // u64
        let mut buf = [0u8; 1024];
        let now_inst = SystemTime::now();
        let base_millis = now_inst.duration_since(UNIX_EPOCH).unwrap().as_millis() as u64;
        let data: Vec<u64> = (0..256).map(|x| x + base_millis).collect();
        let mut _off = 0;

        _off = DeltaNPMedFixedSect::gen_stats_and_write(&mut buf, _off, &data[..]).unwrap();

        let mut sink = U64_256Sink::new();
        let section = DeltaNPMedFixedSect::<u64>::try_from(&buf).unwrap();
        assert!(section.num_bytes() < 350);   // 12 + ~1 bytes per element + overhead of 25% =~ 320
        section.decode_to_sink(&mut sink).unwrap();
        assert_eq!(sink.values[..], data[..]);
        assert_eq!(section.delta_range(), 256);

        // u32
        let data: Vec<u32> = (0..256).map(|x| x + 100_000).collect();
        _off = 0;
        _off = DeltaNPMedFixedSect::<u32>::gen_stats_and_write(&mut buf, _off, &data[..]).unwrap();

        let mut sink = U32_256Sink::new();
        let section = DeltaNPMedFixedSect::<u32>::try_from(&buf).unwrap();
        assert!(section.num_bytes() < 350);   // 12 + ~1 bytes per element + overhead of 25% =~ 320
        section.decode_to_sink(&mut sink).unwrap();
        assert_eq!(sink.values[..], data[..]);
        assert_eq!(section.delta_range(), 256);
    }

    #[test]
    fn test_const_write_and_decode() {
        let mut buf = [0u8; 256];
        let data = [400u64; 256];
        let _off = ConstFixedSect::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();

        let mut sink = U64_256Sink::new();
        let section = ConstFixedSect::<u64>::try_from(&buf).unwrap();
        assert_eq!(section.num_bytes(), 9);
        section.decode_to_sink(&mut sink).unwrap();
        assert_eq!(sink.values[..], data[..]);
    }

    #[test]
    fn test_autoencoder() {
        let mut buf = [0u8; 1024];

        // Test 1: Constant, non-null
        let data = [23_000u64; 256];
        let _off = AutoEncoder::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();
        let sect = FixedSectEnum::<u64>::try_from(&buf[..]).unwrap();
        match sect {
            FixedSectEnum::ConstFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }

        // Test 2: all 0's
        let data = [0u64; 256];
        let _off = AutoEncoder::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();
        let sect = FixedSectEnum::<u64>::try_from(&buf[..]).unwrap();
        match sect {
            FixedSectEnum::NullFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }

        // Test 3: Normal items range between 1 and n
        let data: Vec<u32> = (0..256).collect();
        let _off = AutoEncoder::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();
        let sect = FixedSectEnum::<u32>::try_from(&buf[..]).unwrap();
        match sect {
            FixedSectEnum::NibblePackMedFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }

        // Test 4: Elevated, should be delta (max-min << max)
        let data: Vec<u32> = (10_000..10_256).collect();
        let _off = AutoEncoder::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();
        let sect = FixedSectEnum::<u32>::try_from(&buf[..]).unwrap();
        match sect {
            FixedSectEnum::DeltaNPMedFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }
    }

    #[test]
    fn test_xor_write_and_decode() {
        let mut buf = [0u8; 1024];

        // f32
        let data: Vec<f32> = (0..256).map(|x| x as f32 / 1.3).collect();
        let _off = XorNPMedFixedSect::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();

        let mut sink = Section256Sink::<f32>::new();
        let section = XorNPMedFixedSect::try_from(&buf).unwrap();
        dbg!(section.num_bytes());
        section.decode_to_sink(&mut sink).unwrap();
        assert_eq!(sink.values[..], data[..]);
    }

    #[test]
    fn test_f32_xor_autoencode() {
        let mut buf = [0u8; 1024];
        let mut sink = Section256Sink::<f32>::new();

        // Test 1: Constant, non-null
        let data = [3.5f32; 256];
        let _off = XorNPMedFixedSect::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();
        let sect = FixedSectEnum::<f32>::try_from(&buf[..]).unwrap();
        match sect {
            FixedSectEnum::ConstFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }
        sect.decode(&mut sink).unwrap();
        assert_eq!(sink.values[..], data[..]);

        // Test 2: all 0's
        let data = [0f32; 256];
        let _off = XorNPMedFixedSect::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();
        let sect = FixedSectEnum::<f32>::try_from(&buf[..]).unwrap();
        match sect {
            FixedSectEnum::NullFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }
        sink.reset();
        sect.decode(&mut sink).unwrap();
        assert_eq!(sink.values[..], data[..]);

        // Test 3: Normal items range between 1 and n
        let data: Vec<f32> = (0..256).map(|x| x as f32 / 1.6).collect();
        let _off = XorNPMedFixedSect::gen_stats_and_write(&mut buf, 0, &data[..]).unwrap();
        let sect = FixedSectEnum::<f32>::try_from(&buf[..]).unwrap();
        match sect {
            FixedSectEnum::XorNPMedFixedSect(..) => {},
            _ => panic!("Got the wrong sect: {:?}", sect),
        }
        sink.reset();
        sect.decode(&mut sink).unwrap();
        assert_eq!(sink.values[..], data[..]);
    }
}