1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use proc_macro::TokenStream;
use quote::quote;
use syn::parse_macro_input;

/// Iterator comprehension
///
/// The syntax is similar to [Haskell's list comprehension](https://wiki.haskell.org/List_comprehension).
///
/// Basic syntax is as: `[<expr>; <quals>, ...]`
///
/// # Examples
///
/// `<pat> <- <expr>` binds items of `expr` to `pat`.
/// `expr` must have `.into_iter()` method.
///
/// ```
/// # use comprehension::iter;
/// iter![x * x; x <- 0..10];
/// // => [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
/// ```
///
/// You can also use patterns.
///
/// ```
/// # use comprehension::iter;
/// iter![x * y; (x, y) <- vec![(1, 1), (2, 3), (4, 5)]];
/// // => [1, 6, 20]
/// ```
///
/// `<expr>` filters item.
/// `expr` must have type `bool`.
///
/// ```
/// # use comprehension::iter;
/// fn gcd(a: i32, b: i32) -> i32 {
///     if b == 0 { a } else { gcd(b, a % b) }
/// }
///
/// iter![(i, j); i <- 1.., j <- 1..i, gcd(i, j) == 1].take(10);
/// // => [(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5)]
/// ```
///
/// `let <pat> = <expr>` introduces a binding.
///
/// ```
/// # use comprehension::iter;
/// iter![(i, j); i <- 1.., let k = i * i, j <- 1..=k].take(10);
/// // => [(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5)]
/// ```
///
/// If there is no binding to iterator, just one element will be returned (same as Haskell's behaviour).
///
/// ```
/// # use comprehension::iter;
/// iter![1; ];      // => [1]
/// iter![1; false]; // => []
/// iter![1; true];  // => [1]
/// ```
///
#[proc_macro]
pub fn iter(item: TokenStream) -> TokenStream {
    let comp = parse_macro_input!(item as Comprehension);

    let body = comp.body;
    let mut ret = quote! {
        std::iter::once(#body)
    };

    for q in comp.quals.iter().rev() {
        match q {
            Qual::Generator(pat, iter) => {
                ret = quote! {
                    (#iter).into_iter().flat_map(move |#pat| #ret)
                };
            }
            Qual::LocalDecl(expr_let) => {
                ret = quote! {
                    {
                        #expr_let;
                        #ret
                    }
                };
            }
            Qual::Guard(pred) => {
                ret = quote! {
                    std::iter::once(())
                        .take(if #pred {1} else {0})
                        .flat_map(move |_| #ret)
                }
            }
        }
    }
    ret.into()
}

struct Comprehension {
    body: syn::Expr,
    quals: Vec<Qual>,
}

enum Qual {
    Generator(syn::Pat, syn::Expr),
    LocalDecl(syn::ExprLet),
    Guard(syn::Expr),
}

impl syn::parse::Parse for Comprehension {
    fn parse(input: syn::parse::ParseStream) -> syn::Result<Self> {
        use syn::{punctuated::Punctuated, Token};

        let body = input.parse()?;
        input.parse::<syn::Token![;]>()?;
        let quals = Punctuated::<Qual, Token![,]>::parse_terminated(input)?
            .into_iter()
            .collect();
        Ok(Comprehension { body, quals })
    }
}

impl syn::parse::Parse for Qual {
    fn parse(input: syn::parse::ParseStream) -> syn::Result<Self> {
        parse_generator(input)
            .or_else(|_| parse_local_decl(input))
            .or_else(|_| parse_guard(input))
    }
}

fn parse_generator(input: syn::parse::ParseStream) -> syn::Result<Qual> {
    if {
        let input = input.fork();
        input
            .parse::<syn::Pat>()
            .and_then(|_| input.parse::<syn::Token![<-]>())
            .is_ok()
    } {
        let pat = input.parse()?;
        input.parse::<syn::Token![<-]>()?;
        let expr = input.parse()?;
        Ok(Qual::Generator(pat, expr))
    } else {
        Err(syn::Error::new(input.span(), "expect pat"))
    }
}

fn parse_local_decl(input: syn::parse::ParseStream) -> syn::Result<Qual> {
    if input.peek(syn::Token![let]) {
        input.parse().map(Qual::LocalDecl)
    } else {
        Err(syn::Error::new(input.span(), "expect `let`"))
    }
}

fn parse_guard(input: syn::parse::ParseStream) -> syn::Result<Qual> {
    input.parse().map(Qual::Guard)
}

/// Vector comprehension
///
/// `vect![...]` just is same as `iter![...].collect::<Vec<_>>()`
///
#[proc_macro]
pub fn vect(item: TokenStream) -> TokenStream {
    let body: proc_macro2::TokenStream = iter(item).into();
    let ret = quote! {
        #body.collect::<Vec<_>>()
    };
    ret.into()
}

/// Sum of iterator comprehension
///
/// `sum![...]` is same as `iter![...].sum()` excepting output type will be inferred.
///
/// ```
/// # use comprehension::sum;
/// let s = sum![i; i <- 1..=10]; // this compiles
/// // let s = iter![i; i <- 1..=10].sum(); // this does not compile
/// ```
///
#[proc_macro]
pub fn sum(item: TokenStream) -> TokenStream {
    let body: proc_macro2::TokenStream = iter(item).into();
    let ret = quote! {
        {
            fn sum_helper<T, I>(it: I) -> T
            where
                T: std::iter::Sum<T>,
                I: Iterator<Item = T>,
            {
                it.sum()
            }
            sum_helper(#body)
        }
    };
    ret.into()
}

/// Product of iterator comprehension
///
/// `product![...]` is same as `iter![...].product()` excepting output type will be inferred.
///
/// ```
/// # use comprehension::product;
/// let s = product![i; i <- 1..=10]; // this compiles
/// // let s = iter![i; i <- 1..=10].product(); // this does not compile
/// ```
///
#[proc_macro]
pub fn product(item: TokenStream) -> TokenStream {
    let body: proc_macro2::TokenStream = iter(item).into();
    let ret = quote! {
        {
            fn product_helper<T, I>(it: I) -> T
            where
                T: std::iter::Product<T>,
                I: Iterator<Item = T>,
            {
                it.product()
            }
            product_helper(#body)
        }
    };
    ret.into()
}