1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
use float::Float;
use int::Int;

macro_rules! int_to_float {
    ($i:expr, $ity:ty, $fty:ty) => {{
        let i = $i;
        if i == 0 {
            return 0.0;
        }

        let mant_dig = <$fty>::SIGNIFICAND_BITS + 1;
        let exponent_bias = <$fty>::EXPONENT_BIAS;

        let n = <$ity as Int>::BITS;
        let (s, a) = i.extract_sign();
        let mut a = a;

        // number of significant digits
        let sd = n - a.leading_zeros();

        // exponent
        let mut e = sd - 1;

        if <$ity as Int>::BITS < mant_dig {
            return <$fty>::from_parts(
                s,
                (e + exponent_bias) as <$fty as Float>::Int,
                (a as <$fty as Float>::Int) << (mant_dig - e - 1),
            );
        }

        a = if sd > mant_dig {
            /* start:  0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
             *  finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
             *                                                12345678901234567890123456
             *  1 = msb 1 bit
             *  P = bit MANT_DIG-1 bits to the right of 1
             *  Q = bit MANT_DIG bits to the right of 1
             *  R = "or" of all bits to the right of Q
             */
            let mant_dig_plus_one = mant_dig + 1;
            let mant_dig_plus_two = mant_dig + 2;
            a = if sd == mant_dig_plus_one {
                a << 1
            } else if sd == mant_dig_plus_two {
                a
            } else {
                (a >> (sd - mant_dig_plus_two)) as <$ity as Int>::UnsignedInt
                    | ((a & <$ity as Int>::UnsignedInt::max_value())
                        .wrapping_shl((n + mant_dig_plus_two) - sd)
                        != 0) as <$ity as Int>::UnsignedInt
            };

            /* finish: */
            a |= ((a & 4) != 0) as <$ity as Int>::UnsignedInt; /* Or P into R */
            a += 1; /* round - this step may add a significant bit */
            a >>= 2; /* dump Q and R */

            /* a is now rounded to mant_dig or mant_dig+1 bits */
            if (a & (1 << mant_dig)) != 0 {
                a >>= 1;
                e += 1;
            }
            a
        /* a is now rounded to mant_dig bits */
        } else {
            a.wrapping_shl(mant_dig - sd)
            /* a is now rounded to mant_dig bits */
        };

        <$fty>::from_parts(
            s,
            (e + exponent_bias) as <$fty as Float>::Int,
            a as <$fty as Float>::Int,
        )
    }};
}

intrinsics! {
    #[arm_aeabi_alias = __aeabi_i2f]
    pub extern "C" fn __floatsisf(i: i32) -> f32 {
        int_to_float!(i, i32, f32)
    }

    #[arm_aeabi_alias = __aeabi_i2d]
    pub extern "C" fn __floatsidf(i: i32) -> f64 {
        int_to_float!(i, i32, f64)
    }

    #[maybe_use_optimized_c_shim]
    #[arm_aeabi_alias = __aeabi_l2f]
    pub extern "C" fn __floatdisf(i: i64) -> f32 {
        // On x86_64 LLVM will use native instructions for this conversion, we
        // can just do it directly
        if cfg!(target_arch = "x86_64") {
            i as f32
        } else {
            int_to_float!(i, i64, f32)
        }
    }

    #[maybe_use_optimized_c_shim]
    #[arm_aeabi_alias = __aeabi_l2d]
    pub extern "C" fn __floatdidf(i: i64) -> f64 {
        // On x86_64 LLVM will use native instructions for this conversion, we
        // can just do it directly
        if cfg!(target_arch = "x86_64") {
            i as f64
        } else {
            int_to_float!(i, i64, f64)
        }
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __floattisf(i: i128) -> f32 {
        int_to_float!(i, i128, f32)
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __floattidf(i: i128) -> f64 {
        int_to_float!(i, i128, f64)
    }

    #[arm_aeabi_alias = __aeabi_ui2f]
    pub extern "C" fn __floatunsisf(i: u32) -> f32 {
        int_to_float!(i, u32, f32)
    }

    #[arm_aeabi_alias = __aeabi_ui2d]
    pub extern "C" fn __floatunsidf(i: u32) -> f64 {
        int_to_float!(i, u32, f64)
    }

    #[maybe_use_optimized_c_shim]
    #[arm_aeabi_alias = __aeabi_ul2f]
    pub extern "C" fn __floatundisf(i: u64) -> f32 {
        int_to_float!(i, u64, f32)
    }

    #[maybe_use_optimized_c_shim]
    #[arm_aeabi_alias = __aeabi_ul2d]
    pub extern "C" fn __floatundidf(i: u64) -> f64 {
        int_to_float!(i, u64, f64)
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __floatuntisf(i: u128) -> f32 {
        int_to_float!(i, u128, f32)
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __floatuntidf(i: u128) -> f64 {
        int_to_float!(i, u128, f64)
    }
}

#[derive(PartialEq)]
enum Sign {
    Positive,
    Negative,
}

macro_rules! float_to_int {
    ($f:expr, $fty:ty, $ity:ty) => {{
        let f = $f;
        let fixint_min = <$ity>::min_value();
        let fixint_max = <$ity>::max_value();
        let fixint_bits = <$ity as Int>::BITS as usize;
        let fixint_unsigned = fixint_min == 0;

        let sign_bit = <$fty>::SIGN_MASK;
        let significand_bits = <$fty>::SIGNIFICAND_BITS as usize;
        let exponent_bias = <$fty>::EXPONENT_BIAS as usize;
        //let exponent_max = <$fty>::exponent_max() as usize;

        // Break a into sign, exponent, significand
        let a_rep = <$fty>::repr(f);
        let a_abs = a_rep & !sign_bit;

        // this is used to work around -1 not being available for unsigned
        let sign = if (a_rep & sign_bit) == 0 {
            Sign::Positive
        } else {
            Sign::Negative
        };
        let mut exponent = (a_abs >> significand_bits) as usize;
        let significand = (a_abs & <$fty>::SIGNIFICAND_MASK) | <$fty>::IMPLICIT_BIT;

        // if < 1 or unsigned & negative
        if exponent < exponent_bias || fixint_unsigned && sign == Sign::Negative {
            return 0;
        }
        exponent -= exponent_bias;

        // If the value is infinity, saturate.
        // If the value is too large for the integer type, 0.
        if exponent
            >= (if fixint_unsigned {
                fixint_bits
            } else {
                fixint_bits - 1
            })
        {
            return if sign == Sign::Positive {
                fixint_max
            } else {
                fixint_min
            };
        }
        // If 0 <= exponent < significand_bits, right shift to get the result.
        // Otherwise, shift left.
        // (sign - 1) will never overflow as negative signs are already returned as 0 for unsigned
        let r = if exponent < significand_bits {
            (significand >> (significand_bits - exponent)) as $ity
        } else {
            (significand as $ity) << (exponent - significand_bits)
        };

        if sign == Sign::Negative {
            (!r).wrapping_add(1)
        } else {
            r
        }
    }};
}

intrinsics! {
    #[arm_aeabi_alias = __aeabi_f2iz]
    pub extern "C" fn __fixsfsi(f: f32) -> i32 {
        float_to_int!(f, f32, i32)
    }

    #[arm_aeabi_alias = __aeabi_f2lz]
    pub extern "C" fn __fixsfdi(f: f32) -> i64 {
        float_to_int!(f, f32, i64)
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __fixsfti(f: f32) -> i128 {
        float_to_int!(f, f32, i128)
    }

    #[arm_aeabi_alias = __aeabi_d2iz]
    pub extern "C" fn __fixdfsi(f: f64) -> i32 {
        float_to_int!(f, f64, i32)
    }

    #[arm_aeabi_alias = __aeabi_d2lz]
    pub extern "C" fn __fixdfdi(f: f64) -> i64 {
        float_to_int!(f, f64, i64)
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __fixdfti(f: f64) -> i128 {
        float_to_int!(f, f64, i128)
    }

    #[arm_aeabi_alias = __aeabi_f2uiz]
    pub extern "C" fn __fixunssfsi(f: f32) -> u32 {
        float_to_int!(f, f32, u32)
    }

    #[arm_aeabi_alias = __aeabi_f2ulz]
    pub extern "C" fn __fixunssfdi(f: f32) -> u64 {
        float_to_int!(f, f32, u64)
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __fixunssfti(f: f32) -> u128 {
        float_to_int!(f, f32, u128)
    }

    #[arm_aeabi_alias = __aeabi_d2uiz]
    pub extern "C" fn __fixunsdfsi(f: f64) -> u32 {
        float_to_int!(f, f64, u32)
    }

    #[arm_aeabi_alias = __aeabi_d2ulz]
    pub extern "C" fn __fixunsdfdi(f: f64) -> u64 {
        float_to_int!(f, f64, u64)
    }

    #[unadjusted_on_win64]
    pub extern "C" fn __fixunsdfti(f: f64) -> u128 {
        float_to_int!(f, f64, u128)
    }
}