1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
//! This crate contains parser combinators, roughly based on the Haskell library
//! [parsec](http://hackage.haskell.org/package/parsec).
//!
//! A parser in this library can be described as a function which takes some input and if it
//! is succesful, returns a value together with the remaining input.
//! A parser combinator is a function which takes one or more parsers and returns a new parser.
//! For instance the [`many`] parser can be used to convert a parser for single digits into one that
//! parses multiple digits. By modeling parsers in this way it becomes simple to compose complex
//! parsers in an almost declarative way.
//!
//! # Overview
//!
//! `combine` limits itself to creating [LL(1) parsers](https://en.wikipedia.org/wiki/LL_parser)
//! (it is possible to opt-in to LL(k) parsing using the [`try`] combinator) which makes the
//! parsers easy to reason about in both function and performance while sacrificing
//! some generality. In addition to you being able to reason better about the parsers you
//! construct `combine` the library also takes the knowledge of being an LL parser and uses it to
//! automatically construct good error messages.
//!
//! ```rust
//! extern crate combine;
//! use combine::{Parser, State};
//! use combine::char::{digit, letter};
//! const MSG: &'static str = r#"Parse error at line: 1, column: 1
//! Unexpected `|`
//! Expected `digit` or `letter`
//! "#;
//!
//! fn main() {
//!     // Wrapping a `&str` with `State` provides automatic line and column tracking. If `State`
//!     // was not used the positions would instead only be pointers into the `&str`
//!     if let Err(err) = digit().or(letter()).parse(State::new("|")) {
//!         assert_eq!(MSG, format!("{}", err));
//!     }
//! }
//! ```
//!
//! This library currently contains five modules:
//!
//! * [`combinator`] contains the before mentioned parser combinators and thus contains the main
//! building blocks for creating any sort of complex parsers. It consists of free functions such
//! as [`many`] and [`satisfy`] as well as a few methods on the [`Parser`] trait which provides a few
//! functions such as [`or`] which are more natural to use method calls.
//!
//! * [`primitives`] contains the [`Parser`] and [`Stream`] traits which are the core abstractions in
//! combine as well as various structs dealing with input streams and errors. You usually only need
//! to use this module if you want more control over parsing and input streams.
//!
//! * [`char`] and [`byte`] provides parsers specifically working with streams of characters
//! (`char`) and bytes (`u8`) respectively. As a few examples it has parsers for accepting digits,
//! letters or whitespace.
//!
//! * [`range`] provides some zero-copy parsers for [`RangeStream`]s.
//!
//! # Examples
//!
//! ```
//! extern crate combine;
//! use combine::char::{spaces, digit, char};
//! use combine::{many1, sep_by, Parser, ParseError};
//!
//! fn main() {
//!     //Parse spaces first and use the with method to only keep the result of the next parser
//!     let integer = spaces()
//!         //parse a string of digits into an i32
//!         .with(many1(digit()).map(|string: String| string.parse::<i32>().unwrap()));
//!
//!     //Parse integers separated by commas, skipping whitespace
//!     let mut integer_list = sep_by(integer, spaces().skip(char(',')));
//!
//!     //Call parse with the input to execute the parser
//!     let input = "1234, 45,78";
//!     let result: Result<(Vec<i32>, &str), ParseError<&str>> = integer_list.parse(input);
//!     match result {
//!         Ok((value, _remaining_input)) => println!("{:?}", value),
//!         Err(err) => println!("{}", err)
//!     }
//! }
//! ```
//!
//! If we need a parser that is mutually recursive we can define a free function which internally
//! can in turn be used as a parser by using the [`parser`][fn parser] function which turns a function with the
//! correct signature into a parser. In this case we define `expr` to work on any type of [`Stream`]
//! which is combine's way of abstracting over different data sources such as array slices, string
//! slices, iterators etc. If instead you would only need to parse string already in memory you
//! could define `expr` as `fn expr(input: &str) -> ParseResult<Expr, &str>`
//!
//! ```
//! extern crate combine;
//! use combine::char::{char, letter, spaces};
//! use combine::{between, many1, parser, sep_by, Parser};
//! use combine::primitives::{State, Stream, ParseResult};
//!
//! #[derive(Debug, PartialEq)]
//! enum Expr {
//!     Id(String),
//!     Array(Vec<Expr>),
//!     Pair(Box<Expr>, Box<Expr>)
//! }
//!
//! fn expr<I>(input: I) -> ParseResult<Expr, I>
//!     where I: Stream<Item=char>
//! {
//!     let word = many1(letter());
//!
//!     //Creates a parser which parses a char and skips any trailing whitespace
//!     let lex_char = |c| char(c).skip(spaces());
//!
//!     let comma_list = sep_by(parser(expr::<I>), lex_char(','));
//!     let array = between(lex_char('['), lex_char(']'), comma_list);
//!
//!     //We can use tuples to run several parsers in sequence
//!     //The resulting type is a tuple containing each parsers output
//!     let pair = (lex_char('('),
//!                 parser(expr::<I>),
//!                 lex_char(','),
//!                 parser(expr::<I>),
//!                 lex_char(')'))
//!                    .map(|t| Expr::Pair(Box::new(t.1), Box::new(t.3)));
//!
//!     word.map(Expr::Id)
//!         .or(array.map(Expr::Array))
//!         .or(pair)
//!         .skip(spaces())
//!         .parse_stream(input)
//! }
//!
//! fn main() {
//!     let result = parser(expr)
//!         .parse("[[], (hello, world), [rust]]");
//!     let expr = Expr::Array(vec![
//!           Expr::Array(Vec::new())
//!         , Expr::Pair(Box::new(Expr::Id("hello".to_string())),
//!                      Box::new(Expr::Id("world".to_string())))
//!         , Expr::Array(vec![Expr::Id("rust".to_string())])
//!     ]);
//!     assert_eq!(result, Ok((expr, "")));
//! }
//! ```
//!
//! [`combinator`]: combinator/index.html
//! [`primitives`]: primitives/index.html
//! [`char`]: char/index.html
//! [`byte`]: byte/index.html
//! [`range`]: range/index.html
//! [`many`]: combinator/fn.many.html
//! [`try`]: combinator/fn.try.html
//! [`satisfy`]: combinator/fn.satisfy.html
//! [`or`]: primitives/trait.Parser.html#method.or
//! [`Stream`]: primitives/trait.Stream.html
//! [`RangeStream`]: primitives/trait.RangeStream.html
//! [`Parser`]: primitives/trait.Parser.html
//! [fn parser]: combinator/fn.parser.html

// inline(always) is only used on trivial functions returning parsers
#![cfg_attr(feature = "cargo-clippy", allow(inline_always))]

#[doc(inline)]
pub use primitives::{Parser, ParseError, ConsumedResult, ParseResult, State, from_iter, Stream,
                     StreamOnce};
#[doc(inline)]
pub use combinator::{any, between, chainl1, chainr1, choice, count, eof, env_parser, many, many1,
                     none_of, one_of, optional, parser, position, satisfy, satisfy_map, sep_by,
                     sep_by1, sep_end_by, sep_end_by1, skip_many, skip_many1, token, tokens, try,
                     look_ahead, value, unexpected, not_followed_by};

macro_rules! static_fn {
    (($($arg: pat, $arg_ty: ty),*) -> $ret: ty { $body: expr }) => { {
        fn temp($($arg: $arg_ty),*) -> $ret { $body }
        temp as fn(_) -> _
    } }
}

macro_rules! impl_token_parser {
    ($name: ident($($ty_var: ident),*), $ty: ty, $inner_type: ty) => {
    #[derive(Clone)]
    pub struct $name<I $(,$ty_var)*>($inner_type, PhantomData<fn (I) -> I>)
        where I: Stream<Item=$ty> $(, $ty_var : Parser<Input=I>)*;
    impl <I $(,$ty_var)*> Parser for $name<I $(,$ty_var)*>
        where I: Stream<Item=$ty> $(, $ty_var : Parser<Input=I>)* {
        type Input = I;
        type Output = <$inner_type as Parser>::Output;
        #[inline]
        fn parse_lazy(&mut self,
                      input: Self::Input) -> ConsumedResult<Self::Output, Self::Input> {
            self.0.parse_lazy(input)
        }
        fn add_error(&mut self, errors: &mut ParseError<Self::Input>) {
            self.0.add_error(errors)
        }
    }
}
}

/// Module containing the primitive types which is used to create and compose more advanced
/// parsers.
#[macro_use]
pub mod primitives;
/// Module containing all specific parsers.
pub mod combinator;
/// Module containing zero-copy parsers.
pub mod range;
/// Module containing parsers specialized on byte streams.
pub mod byte;
/// Module containing parsers specialized on character streams.
pub mod char;



#[cfg(test)]
mod tests {
    use super::*;
    use super::primitives::{SourcePosition, Error, Consumed};
    use char::{alpha_num, char, digit, letter, spaces, string};


    fn integer<'a, I>(input: I) -> ParseResult<i64, I>
        where I: Stream<Item = char>
    {
        let (s, input) = try!(many1::<String, _>(digit())
            .expected("integer")
            .parse_stream(input));
        let mut n = 0;
        for c in s.chars() {
            n = n * 10 + (c as i64 - '0' as i64);
        }
        Ok((n, input))
    }

    #[test]
    fn test_integer() {
        let result = parser(integer).parse("123");
        assert_eq!(result, Ok((123i64, "")));
    }
    #[test]
    fn list() {
        let mut p = sep_by(parser(integer), char(','));
        let result = p.parse("123,4,56");
        assert_eq!(result, Ok((vec![123i64, 4, 56], "")));
    }
    #[test]
    fn iterator() {
        let result = parser(integer)
            .parse(from_iter("123".chars()))
            .map(|(i, mut input)| (i, input.uncons().is_err()));
        assert_eq!(result, Ok((123i64, true)));
    }
    #[test]
    fn field() {
        let word = || many(alpha_num());
        let spaces = spaces();
        let c_decl = (word(), spaces.clone(), char(':'), spaces, word())
            .map(|t| (t.0, t.4))
            .parse("x: int");
        assert_eq!(c_decl, Ok((("x".to_string(), "int".to_string()), "")));
    }
    #[test]
    fn source_position() {
        let source = r"
123
";
        let result = (spaces(), parser(integer), spaces())
            .map(|t| t.1)
            .parse_stream(State::new(source));
        let state = Consumed::Consumed(State {
            position: SourcePosition {
                line: 3,
                column: 1,
            },
            input: "",
        });
        assert_eq!(result, Ok((123i64, state)));
    }

    #[derive(Debug, PartialEq)]
    enum Expr {
        Id(String),
        Int(i64),
        Array(Vec<Expr>),
        Plus(Box<Expr>, Box<Expr>),
        Times(Box<Expr>, Box<Expr>),
    }

    #[allow(unconditional_recursion)]
    fn expr<I>(input: I) -> ParseResult<Expr, I>
        where I: Stream<Item = char>
    {
        let word = many1(letter()).expected("identifier");
        let integer = parser(integer);
        let array = between(char('['), char(']'), sep_by(parser(expr), char(','))).expected("[");
        let paren_expr = between(char('('), char(')'), parser(term)).expected("(");
        let spaces = spaces();
        spaces.clone()
            .with(word.map(Expr::Id)
                .or(integer.map(Expr::Int))
                .or(array.map(Expr::Array))
                .or(paren_expr))
            .skip(spaces)
            .parse_stream(input)
    }

    #[test]
    fn expression() {
        let result = sep_by(parser(expr), char(',')).parse("int, 100, [[], 123]");
        let exprs = vec![Expr::Id("int".to_string()),
                         Expr::Int(100),
                         Expr::Array(vec![Expr::Array(vec![]), Expr::Int(123)])];
        assert_eq!(result, Ok((exprs, "")));
    }

    #[test]
    fn expression_error() {
        let input = r"
,123
";
        let result = parser(expr).parse(State::new(input));
        let err = ParseError {
            position: SourcePosition {
                line: 2,
                column: 1,
            },
            errors: vec![Error::Unexpected(','.into()),
                         Error::Expected("integer".into()),
                         Error::Expected("identifier".into()),
                         Error::Expected("[".into()),
                         Error::Expected("(".into())],
        };
        assert_eq!(result, Err(err));
    }

    fn term<I>(input: I) -> ParseResult<Expr, I>
        where I: Stream<Item = char>
    {
        fn times(l: Expr, r: Expr) -> Expr {
            Expr::Times(Box::new(l), Box::new(r))
        }
        fn plus(l: Expr, r: Expr) -> Expr {
            Expr::Plus(Box::new(l), Box::new(r))
        }
        let mul = char('*').map(|_| times);
        let add = char('+').map(|_| plus);
        let factor = chainl1(parser(expr), mul);
        chainl1(factor, add).parse_stream(input)
    }

    #[test]
    fn operators() {
        let input = r"
1 * 2 + 3 * test
";
        let (result, _) = parser(term)
            .parse(State::new(input))
            .unwrap();

        let e1 = Expr::Times(Box::new(Expr::Int(1)), Box::new(Expr::Int(2)));
        let e2 = Expr::Times(Box::new(Expr::Int(3)),
                             Box::new(Expr::Id("test".to_string())));
        assert_eq!(result, Expr::Plus(Box::new(e1), Box::new(e2)));
    }


    fn follow(input: State<&str>) -> ParseResult<(), State<&str>> {
        match input.clone().uncons() {
            Ok(c) => {
                if c.is_alphanumeric() {
                    let e = Error::Unexpected(c.into());
                    Err(Consumed::Empty(ParseError::new(input.position(), e)))
                } else {
                    Ok(((), Consumed::Empty(input)))
                }
            }
            Err(_) => Ok(((), Consumed::Empty(input))),
        }
    }
    #[test]
    fn error_position() {
        let mut p = string("let")
            .skip(parser(follow))
            .map(|x| x.to_string())
            .or(many1(digit()));
        match p.parse(State::new("le123")) {
            Ok(_) => assert!(false),
            Err(err) => {
                assert_eq!(err.position,
                           SourcePosition {
                               line: 1,
                               column: 1,
                           })
            }
        }
        match p.parse(State::new("let1")) {
            Ok(_) => assert!(false),
            Err(err) => {
                assert_eq!(err.position,
                           SourcePosition {
                               line: 1,
                               column: 4,
                           })
            }
        }
    }

    #[test]
    fn sep_by_error_consume() {
        let mut p = sep_by::<Vec<_>, _, _>(string("abc"), char(','));
        let err = p.parse(State::new("ab,abc"))
            .map(|x| format!("{:?}", x))
            .unwrap_err();
        assert_eq!(err.position,
                   SourcePosition {
                       line: 1,
                       column: 1,
                   });
    }

    #[test]
    fn optional_error_consume() {
        let mut p = optional(string("abc"));
        let err = p.parse(State::new("ab"))
            .map(|x| format!("{:?}", x))
            .unwrap_err();
        assert_eq!(err.position,
                   SourcePosition {
                       line: 1,
                       column: 1,
                   });
    }
    #[test]
    fn chainl1_error_consume() {
        fn first<T, U>(t: T, _: U) -> T {
            t
        }
        let mut p = chainl1(string("abc"), char(',').map(|_| first));
        assert!(p.parse("abc,ab").is_err());
    }

    #[test]
    fn inner_error_consume() {
        let mut p = many::<Vec<_>, _>(between(char('['), char(']'), digit()));
        let result = p.parse(State::new("[1][2][]"));
        assert!(result.is_err(), format!("{:?}", result));
        let error = result.map(|x| format!("{:?}", x))
            .unwrap_err();
        assert_eq!(error.position,
                   SourcePosition {
                       line: 1,
                       column: 8,
                   });
    }

    #[test]
    fn infinite_recursion_in_box_parser() {
        let _: Result<(Vec<_>, _), _> = (many(Box::new(digit()))).parse("1");
    }

    #[test]
    fn unsized_parser() {
        let mut parser: Box<Parser<Input = &str, Output = char>> = Box::new(digit());
        let borrow_parser = &mut *parser;
        assert_eq!(borrow_parser.parse("1"), Ok(('1', "")));
    }

    #[test]
    fn choice_strings() {
        let mut fruits = [try(string("Apple")),
                          try(string("Banana")),
                          try(string("Cherry")),
                          try(string("Date")),
                          try(string("Fig")),
                          try(string("Grape"))];
        let mut parser = choice(&mut fruits);
        assert_eq!(parser.parse("Apple"), Ok(("Apple", "")));
        assert_eq!(parser.parse("Banana"), Ok(("Banana", "")));
        assert_eq!(parser.parse("Cherry"), Ok(("Cherry", "")));
        assert_eq!(parser.parse("DateABC"), Ok(("Date", "ABC")));
        assert_eq!(parser.parse("Fig123"), Ok(("Fig", "123")));
        assert_eq!(parser.parse("GrapeApple"), Ok(("Grape", "Apple")));
    }

    #[test]
    fn std_error() {
        use std::fmt;
        use std::error::Error as StdError;
        #[derive(Debug)]
        struct Error;
        impl fmt::Display for Error {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "error")
            }
        }
        impl StdError for Error {
            fn description(&self) -> &str {
                "error"
            }
        }
        let result: Result<((), _), ParseError<&str>> = string("abc")
            .and_then(|_| Err(Error))
            .parse("abc");
        assert!(result.is_err());
        // Test that ParseError can be coerced to a StdError
        let _ = result.map_err(|err| {
            let err: Box<StdError> = Box::new(err);
            err
        });
    }

    #[test]
    fn extract_std_error() {
        // The previous test verified that we could map a ParseError to a StdError by dropping the
        // internal error details.  This test verifies that we can map a ParseError to a StdError
        // without dropping the internal error details.  Consumers using `error-chain` will
        // appreciate this.  For technical reasons this is pretty janky; see the discussion in
        // https://github.com/Marwes/combine/issues/86, and excuse the test with significant
        // boilerplate!
        use std::fmt;
        use std::error::Error as StdError;

        #[derive(Clone, PartialEq, Debug)]
        struct CloneOnly(String);

        #[derive(Debug)]
        struct DisplayVec<T>(Vec<T>);

        #[derive(Debug)]
        struct ExtractedError(usize, DisplayVec<Error<CloneOnly, DisplayVec<CloneOnly>>>);

        impl StdError for ExtractedError {
            fn description(&self) -> &str {
                "extracted error"
            }
        }

        impl fmt::Display for CloneOnly {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "{}", self.0)
            }
        }

        impl<T: fmt::Debug> fmt::Display for DisplayVec<T> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "[{:?}]", self.0)
            }
        }

        impl fmt::Display for ExtractedError {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                try!(writeln!(f, "Parse error at {}", self.0));
                Error::fmt_errors(&(self.1).0, f)
            }
        }

        let input = &[CloneOnly("x".to_string()), CloneOnly("y".to_string())][..];
        let result = token(CloneOnly("z".to_string()))
            .parse(input)
            .map_err(|e| e.translate_position(input))
            .map_err(|e| {
                ExtractedError(e.position,
                               DisplayVec(e.errors
                                   .into_iter()
                                   .map(|e| e.map_range(|r| DisplayVec(r.to_owned())))
                                   .collect()))
            });

        assert!(result.is_err());
        // Test that the fresh ExtractedError is Display, so that the internal errors can be
        // inspected by consuming code; and that the ExtractedError can be coerced to StdError.
        let _ = result.map_err(|err| {
            let s = format!("{}", err);
            assert!(s.starts_with("Parse error at 0"));
            assert!(s.contains("Expected"));
            let err: Box<StdError> = Box::new(err);
            err
        });
    }
}