1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//! XYZ color type

use super::chromaticity::XYY;
use std::convert::From;
use std::fmt;
use std::ops::{AddAssign, Index, IndexMut, Add, Sub, Mul, Div, Neg};
use num_traits::{Bounded, One, Zero};
use float_cmp::{F32Margin, F64Margin, ApproxEq};

use crate::math::Real;

pub type XYZf32 = XYZ<f32>;
pub type XYZf64 = XYZ<f64>;

/// XYZ color type
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Default)]
pub struct XYZ<T> where T: Real {
    pub x: T,
    pub y: T,
    pub z: T,
}

impl<T> XYZ<T>  where T: Real {
    pub fn new(x: T, y: T, z: T) -> XYZ<T> {
        XYZ::<T> { x, y, z }
    }

    pub fn from_scalar(a: T) -> XYZ<T> {
        XYZ::<T> { x: a, y: a, z: a }
    }

    /// Returns a unit-luminance version of this color.
    pub fn normalized(&self) -> XYZ<T>  {
        *self / Self::from_scalar(self.y)
    }

    pub fn abs(&self) -> XYZ<T> {
        XYZ::<T> {
            x: self.x.abs(),
            y: self.y.abs(),
            z: self.z.abs(),
        }
    }
}

pub fn xyz<T>(x: T, y: T, z: T) -> XYZ<T> where T: Real {
    XYZ::new(x, y, z)
}

impl<T> XYZ<T> where T: Real + One {
    /// Creates a new XYZ from the given `xyY` coordinates
    #[allow(non_snake_case)]
    pub fn from_chromaticity(c: XYY<T>) -> XYZ<T> {
        XYZ::<T> {
            x: c.x * c.Y / c.y,
            y: c.Y,
            z: (T::one() - c.x - c.y) * c.Y / c.y,
        } * T::from(100.0).unwrap()
    }

    pub fn from_xy(x: T, y: T) -> XYZ<T> {
        Self::from_chromaticity(XYY::new(x, y, T::one()))  
    }

    pub fn normalized_y(&self) -> XYZ<T> {
        (*self) / self.y * T::from(100.0).unwrap()
    }

}

impl<T> From<XYY<T>> for XYZ<T> where T: Real {
    fn from(c: XYY<T>) -> XYZ<T> {
        XYZ::from_chromaticity(c)
    }
}

impl<T> Zero for XYZ<T> where T: Real {
    fn zero() -> XYZ<T> {
        XYZ::from_scalar(T::zero())
    }

    fn is_zero(&self) -> bool {
        self.x.is_zero() && self.y.is_zero() && self.z.is_zero()
    }
}

impl<T> One for XYZ<T> where T: Real {
    fn one() -> XYZ<T> {
        XYZ::from_scalar(T::one())
    }
}

impl<T> Bounded for XYZ<T> where T: Real {
    fn min_value() -> XYZ<T> {
        XYZ::<T> {
            x: Bounded::min_value(),
            y: Bounded::min_value(),
            z: Bounded::min_value(),
        }
    }
    fn max_value() -> XYZ<T> {
        XYZ::<T> {
            x: Bounded::max_value(),
            y: Bounded::max_value(),
            z: Bounded::max_value(),
        }
    }
}

impl<T> Index<usize> for XYZ<T> where T: Real {
    type Output = T;

    fn index(&self, i: usize) -> &T {
        match i {
            0 => &self.x,
            1 => &self.y,
            2 => &self.z,
            _ => panic!("Tried to access XYZ with index of {}", i),
        }
    }
}

impl<T> IndexMut<usize> for XYZ<T> where T: Real {
    fn index_mut(&mut self, i: usize) -> &mut T {
        match i {
            0 => &mut self.x,
            1 => &mut self.y,
            2 => &mut self.z,
            _ => panic!("Tried to access XYZ with index of {}", i),
        }
    }
}

impl<T> fmt::Display for XYZ<T> where T: Real {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({}, {}, {})", self.x, self.y, self.z)
    }
}


impl ApproxEq for XYZf32 {
    type Margin = F32Margin;
    fn approx_eq<T: Into<Self::Margin>>(self, other: Self, margin: T) -> bool {
        let margin = margin.into();
        self.x.approx_eq(other.x, margin) 
        && self.y.approx_eq(other.y, margin)
        && self.z.approx_eq(other.z, margin)
    }
}

impl ApproxEq for XYZf64 {
    type Margin = F64Margin;
    fn approx_eq<T: Into<Self::Margin>>(self, other: Self, margin: T) -> bool {
        let margin = margin.into();
        self.x.approx_eq(other.x, margin) 
        && self.y.approx_eq(other.y, margin)
        && self.z.approx_eq(other.z, margin)
    }
}

impl From<XYZf64> for XYZf32 {
    fn from(x: XYZf64) -> XYZf32 {
        XYZ {
            x: x.x as f32,
            y: x.y as f32,
            z: x.z as f32,
        }
    }
}

impl std::iter::Sum for XYZf32 {
    fn sum<I>(iter: I) -> XYZf32 where I: Iterator<Item=XYZf32> {
        let mut xyz = XYZf32::from_scalar(0.0);
        for i in iter {
            xyz += i;
        }

        xyz
    }
}

/// Addition operator
impl<T> Add for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn add(self, rhs: XYZ<T>) -> XYZ<T> {
        XYZ::<T> {
            x: self.x + rhs.x,
            y: self.y + rhs.y,
            z: self.z + rhs.z,
        }
    }
}

impl<T> AddAssign for XYZ<T> where T: Real {
    fn add_assign(&mut self, rhs: XYZ<T>) {
        *self = XYZ::<T> {
            x: self.x + rhs.x,
            y: self.y + rhs.y,
            z: self.z + rhs.z,
        }
    }
}

/// Subtraction operator
impl<T> Sub for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn sub(self, rhs: XYZ<T>) -> XYZ<T> {
        XYZ::<T> {
            x: self.x - rhs.x,
            y: self.y - rhs.y,
            z: self.z - rhs.z,
        }
    }
}

/// Multiplication operator
impl<T> Mul for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn mul(self, rhs: XYZ<T>) -> XYZ<T> {
        XYZ::<T> {
            x: self.x * rhs.x,
            y: self.y * rhs.y,
            z: self.z * rhs.z,
        }
    }
}

/// Division operator
impl<T> Div for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn div(self, rhs: XYZ<T>) -> XYZ<T> {
        XYZ::<T> {
            x: self.x / rhs.x,
            y: self.y / rhs.y,
            z: self.z / rhs.z,
        }
    }
}

/// Unary negation
impl<T> Neg for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn neg(self) -> XYZ<T> {
        XYZ::<T> {
            x: -self.x,
            y: -self.y,
            z: -self.z,
        }
    }
}

/// Multiplication by a f32
impl<T> Mul<T> for XYZ<T> where T:Real {
    type Output = XYZ<T>;

    fn mul(self, rhs: T) -> XYZ<T> {
        XYZ::<T> {
            x: self.x * rhs,
            y: self.y * rhs,
            z: self.z * rhs,
        }
    }
}

/// Division by a T
impl<T> Div<T> for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn div(self, rhs: T) -> XYZ<T> {
        XYZ::<T> {
            x: self.x / rhs,
            y: self.y / rhs,
            z: self.z / rhs,
        }
    }
}

/// Addition by a T
impl<T> Add<T> for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn add(self, rhs: T) -> XYZ<T> {
        XYZ::<T> {
            x: self.x + rhs,
            y: self.y + rhs,
            z: self.z + rhs,
        }
    }
}

/// Subtraction by a T
impl<T> Sub<T> for XYZ<T> where T: Real {
    type Output = XYZ<T>;

    fn sub(self, rhs: T) -> XYZ<T> {
        XYZ::<T> {
            x: self.x - rhs,
            y: self.y - rhs,
            z: self.z - rhs,
        }
    }
}