1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#![no_std]
#![feature(nll)]

#[macro_use] extern crate arrayref;
extern crate subtle;

#[macro_use] mod module;
pub mod traits;

use core::iter;
use subtle::slices_equal;
use traits::{ KEY_LENGTH, BLOCK_LENGTH };
use traits::BlockCipher;
use module::*;


pub struct Colm<BC: BlockCipher>(BC);
pub struct E;
pub struct D;
pub type Block = [u8; BLOCK_LENGTH];
pub const NONCE_LENGTH: usize = 8;

impl<BC: BlockCipher> Colm<BC> {
    pub fn new(key: &[u8; KEY_LENGTH]) -> Self {
        Colm(BC::new(key))
    }

    fn init(&self, nonce: &[u8; NONCE_LENGTH], aad: &[u8]) -> (Block, Block, Block) {
        let mut w = Block::default();
        let mut l = Block::default();
        let mut delta0 = Block::default();
        let     delta1;
        let mut delta2 = Block::default();

        // Generate the Masks
        self.0.encrypt(&mut l);
        let mut l3 = Block::default();
        mult!(x3; &mut l3, &l);
        mult!(inv2; &mut delta0, &l3);
        delta1 = l;
        mult!(x3; &mut delta2, &l3);

        // Process Associated Data
        let mut nonce_block = Block::default();
        // make the first block blk based on npub and param
        nonce_block[..NONCE_LENGTH].copy_from_slice(nonce);

        iter::once(&nonce_block[..])
            .chain(aad.chunks(BC::BLOCK_LENGTH))
            .for_each(|next| {
                // Process the current Block
                let len = next.len();
                let mut xx = Block::default();

                xx[..len].copy_from_slice(next);
                if len < BC::BLOCK_LENGTH {
                    xx[len] = 0x80;
                    mult!(x7; &mut delta0, &delta0);
                } else {
                    mult!(x2; &mut delta0, &delta0);
                }
                xor!(xx, delta0);
                self.0.encrypt(&mut xx);
                xor!(w, xx);
            });

        (delta1, delta2, w)
    }

    pub fn encrypt<'a>(&'a self, nonce: &[u8; NONCE_LENGTH], aad: &[u8]) -> Process0<'a, BC, E> {
        let (delta1, delta2, w) = self.init(nonce, aad);

        Process0 {
            cipher: &self.0,
            delta1, delta2, w,
            cs: Block::default(),
            _mode: E
        }
    }

    pub fn decrypt<'a>(&'a self, nonce: &[u8; NONCE_LENGTH], aad: &[u8]) -> Process0<'a, BC, D> {
        let (delta1, delta2, w) = self.init(nonce, aad);

        Process0 {
            cipher: &self.0,
            delta1, delta2, w,
            cs: Block::default(),
            _mode: D
        }
    }
}

pub struct Process0<'a, BC: BlockCipher + 'a, Mode> {
    cipher: &'a BC,
    delta1: Block,
    delta2: Block,
    w: Block,
    cs: Block,
    _mode: Mode
}

impl<'a, BC : BlockCipher + 'a> Process0<'a, BC, E> {
    pub fn process(&mut self, input: &Block, output: &mut Block) {
        xor!(&mut self.cs, input);
        self.process_block(State::Process, input, output);
    }

    pub fn finalize(mut self, input: &[u8], output: &mut [u8]) {
        assert!(!input.is_empty()); // XXX should be allow input is empty?
        assert!(input.len() <= BC::BLOCK_LENGTH);
        assert_eq!(input.len() + BC::BLOCK_LENGTH, output.len());

        let len = input.len();
        let mut buf = Block::default();
        let (output, tag) = output.split_at_mut(BC::BLOCK_LENGTH);

        buf[..len].copy_from_slice(input);
        let output = array_mut_ref!(output, 0, BLOCK_LENGTH);

        let state =
            if len < BC::BLOCK_LENGTH {
                buf[len] = 0x80;
                State::Last
            } else { State::LastFul };

        xor!(&mut buf, &self.cs);
        self.process_block(state, &buf, output);

        // Process checksum block
        let mut tmp = Block::default();
        self.process_block(State::Tag, &buf, &mut tmp);
        tag.copy_from_slice(&tmp[..tag.len()]);
    }
}


impl<'a, BC : BlockCipher + 'a> Process0<'a, BC, D> {
    pub fn process(&mut self, input: &Block, output: &mut Block) {
        self.process_block(State::Process, input, output);
        xor!(&mut self.cs, output);
    }

    pub fn finalize(mut self, input: &[u8], output: &mut [u8]) -> bool {
        const OZS: [u8; 16] = [
            0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
        ];

        assert!(!input.is_empty());
        assert!(input.len() > BC::BLOCK_LENGTH && input.len() <= 2 * BC::BLOCK_LENGTH);
        assert_eq!(input.len(), output.len() + BC::BLOCK_LENGTH);

        let len = input.len() - BC::BLOCK_LENGTH;
        let mut buf = Block::default();
        let (input, tag) = input.split_at(BC::BLOCK_LENGTH);
        let input = array_ref!(input, 0, BLOCK_LENGTH);

        let state =
            if len < BC::BLOCK_LENGTH { State::Last }
            else { State::LastFul };

        self.process_block(state, input, &mut buf);
        xor!(&mut self.cs, &buf);
        let (val, remaining) = self.cs.split_at(tag.len());
        output.copy_from_slice(val);

        let r = slices_equal(remaining, &OZS[..remaining.len()]);


        // Process checksum block
        let Process0 { cipher, delta1, delta2, w, cs, .. } = self;
        let mut process = Process0 { cipher, delta1, delta2, w, cs, _mode: E };

        let mut tmp = Block::default();
        process.process_block(State::Tag, &buf, &mut tmp);
        let r2 = slices_equal(tag, &tmp[..tag.len()]);

        r == 1 && r2 == 1
    }
}