1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
//! A [dynamic bounding volume tree implementation](struct.DynamicBoundingVolumeTree.html),
//! index based (not pointer based).
//!
//! The following invariants are true:
//!
//! * A branch node must have exactly two children.
//! * Only leaf nodes contain user data.
//!
//! Internal nodes may have incorrect bounding volumes and height after insertion, removal and
//! updates to values in the tree. These will be fixed during refitting, which is done by calling
//! [`do_refit`](struct.DynamicBoundingVolumeTree.html#method.do_refit).
//!
//! The main heuristic used for insertion and tree rotation, is surface area of the bounding volume.
//!
//! Updating of values in the tree, can either be performed by using the
//! [`values`](struct.DynamicBoundingVolumeTree.html#method.values) function to get a mutable
//! iterator over the values in the tree, or by using
//! [`update_node`](struct.DynamicBoundingVolumeTree.html#method.update_node).
//! It is recommended to use the latter when possible. If the former is used,
//! [`reindex_values`](struct.DynamicBoundingVolumeTree.html#method.reindex_values)
//! must be called if the order of the values is changed in any way.
//!
//! The trait [`TreeValue`](trait.TreeValue.html) needs to be implemented for a type to be usable
//! in the tree.
//!
//! # Examples
//!
//! ```
//! # extern crate cgmath;
//! # extern crate collision;
//!
//! use cgmath::{Point2, Vector2, InnerSpace};
//! use collision::{Aabb, Aabb2, Ray2};
//!
//! use collision::dbvt::{DynamicBoundingVolumeTree, TreeValue, ContinuousVisitor};
//!
//! #[derive(Debug, Clone)]
//! struct Value {
//!     pub id: u32,
//!     pub aabb: Aabb2<f32>,
//!     fat_aabb: Aabb2<f32>,
//! }
//!
//! impl Value {
//!     pub fn new(id: u32, aabb: Aabb2<f32>) -> Self {
//!         Self {
//!             id,
//!             fat_aabb : aabb.add_margin(Vector2::new(3., 3.)),
//!             aabb,
//!         }
//!     }
//! }
//!
//! impl TreeValue for Value {
//!     type Bound = Aabb2<f32>;
//!
//!     fn bound(&self) -> &Aabb2<f32> {
//!         &self.aabb
//!     }
//!
//!     fn get_bound_with_margin(&self) -> Aabb2<f32> {
//!         self.fat_aabb.clone()
//!     }
//! }
//!
//! fn aabb2(minx: f32, miny: f32, maxx: f32, maxy: f32) -> Aabb2<f32> {
//!    Aabb2::new(Point2::new(minx, miny), Point2::new(maxx, maxy))
//! }
//!
//! fn main() {
//!     let mut tree = DynamicBoundingVolumeTree::<Value>::new();
//!     tree.insert(Value::new(10, aabb2(5., 5., 10., 10.)));
//!     tree.insert(Value::new(11, aabb2(21., 14., 23., 16.)));
//!     tree.do_refit();
//!
//!     let ray = Ray2::new(Point2::new(0., 0.), Vector2::new(-1., -1.).normalize());
//!     let mut visitor = ContinuousVisitor::<Ray2<f32>, Value>::new(&ray);
//!     assert_eq!(0, tree.query(&mut visitor).len());
//!
//!     let ray = Ray2::new(Point2::new(6., 0.), Vector2::new(0., 1.).normalize());
//!     let mut visitor = ContinuousVisitor::<Ray2<f32>, Value>::new(&ray);
//!     let results = tree.query(&mut visitor);
//!     assert_eq!(1, results.len());
//!     assert_eq!(10, results[0].0.id);
//!     assert_eq!(Point2::new(6., 5.), results[0].1);
//! }
//! ```
//!

pub use self::util::*;
pub use self::visitor::*;
pub use self::wrapped::TreeValueWrapped;

use std::cmp::max;
use std::fmt;

use num::NumCast;
use rand;
use rand::Rng;

use prelude::*;

mod wrapped;
mod visitor;
mod util;

const SURFACE_AREA_IMPROVEMENT_FOR_ROTATION: f32 = 0.3;
const PERFORM_ROTATION_PERCENTAGE: u32 = 10;

/// Trait that needs to be implemented for any value that is to be used in the
/// [`DynamicBoundingVolumeTree`](struct.DynamicBoundingVolumeTree.html).
///
pub trait TreeValue: Clone {
    /// Bounding volume type
    type Bound;

    /// Return the bounding volume of the value
    fn bound(&self) -> &Self::Bound;

    /// Return a fattened bounding volume. For shapes that do not move, this can be the same as the
    /// base bounding volume. It is recommended for moving shapes to have a larger fat bound, so
    /// tree rotations don't have to be performed every frame.
    fn get_bound_with_margin(&self) -> Self::Bound;
}

/// Make it possible to run broad phase algorithms directly on the value storage in DBVT
impl<T> HasBound for (usize, T)
where
    T: TreeValue,
    T::Bound: Bound,
{
    type Bound = T::Bound;

    fn bound(&self) -> &Self::Bound {
        self.1.bound()
    }
}

/// Visitor trait used for [querying](struct.DynamicBoundingVolumeTree.html#method.query) the tree.
pub trait Visitor {
    /// Bounding volume accepted by the visitor
    type Bound;

    /// Result returned by the acceptance test
    type Result;

    /// Acceptance test function
    fn accept(&mut self, bound: &Self::Bound, is_leaf: bool) -> Option<Self::Result>;
}

/// A dynamic bounding volume tree, index based (not pointer based).
///
/// The following invariants are true:
///
/// * A branch node must have exactly two children.
/// * Only leaf nodes contain user data.
///
/// Internal nodes may have incorrect bounding volumes and height after insertion, removal and
/// updates to values in the tree. These will be fixed during refitting, which is done by calling
/// [`do_refit`](struct.DynamicBoundingVolumeTree.html#method.do_refit). This function should
/// ideally not be called more than once per frame.
///
/// The main heuristic used for insertion and tree rotation, is surface area of the bounding volume.
///
/// Updating of values in the tree, can either be performed by using the
/// [`values`](struct.DynamicBoundingVolumeTree.html#method.values) function to get a mutable
/// iterator over the values in the tree, or by using
/// [`update_node`](struct.DynamicBoundingVolumeTree.html#method.update_node).
/// It is recommended to use the latter when possible. If the former is used,
/// [`reindex_values`](struct.DynamicBoundingVolumeTree.html#method.reindex_values)
/// must be called if the order of the values is changed in any way.
///
/// # Type parameters:
///
/// - `T`: A type that implements [`TreeValue`](trait.TreeValue.html), and is usable in the tree.
///        Needs to be able to store the node index of itself, and handle its own bound and
///        fattened bound.
///
/// # Examples
///
/// ```
/// # extern crate cgmath;
/// # extern crate collision;
///
/// use cgmath::{Point2, Vector2, InnerSpace};
/// use collision::{Aabb, Aabb2, Ray2};
/// use collision::dbvt::{DynamicBoundingVolumeTree, TreeValue, ContinuousVisitor};
///
/// #[derive(Debug, Clone)]
/// struct Value {
///     pub id: u32,
///     pub aabb: Aabb2<f32>,
///     fat_aabb: Aabb2<f32>,
/// }
///
/// impl Value {
///     pub fn new(id: u32, aabb: Aabb2<f32>) -> Self {
///         Self {
///             id,
///             fat_aabb : aabb.add_margin(Vector2::new(3., 3.)),
///             aabb,
///         }
///     }
/// }
///
/// impl TreeValue for Value {
///     type Bound = Aabb2<f32>;
///
///     fn bound(&self) -> &Aabb2<f32> {
///         &self.aabb
///     }
///
///     fn get_bound_with_margin(&self) -> Aabb2<f32> {
///         self.fat_aabb.clone()
///     }
/// }
///
/// fn aabb2(minx: f32, miny: f32, maxx: f32, maxy: f32) -> Aabb2<f32> {
///    Aabb2::new(Point2::new(minx, miny), Point2::new(maxx, maxy))
/// }
///
/// fn main() {
///     let mut tree = DynamicBoundingVolumeTree::<Value>::new();
///     tree.insert(Value::new(10, aabb2(5., 5., 10., 10.)));
///     tree.insert(Value::new(11, aabb2(21., 14., 23., 16.)));
///     tree.do_refit();
///
///     let ray = Ray2::new(Point2::new(0., 0.), Vector2::new(-1., -1.).normalize());
///     let mut visitor = ContinuousVisitor::<Ray2<f32>, Value>::new(&ray);
///     assert_eq!(0, tree.query(&mut visitor).len());
///
///     let ray = Ray2::new(Point2::new(6., 0.), Vector2::new(0., 1.).normalize());
///     let mut visitor = ContinuousVisitor::<Ray2<f32>, Value>::new(&ray);
///     let results = tree.query(&mut visitor);
///     assert_eq!(1, results.len());
///     assert_eq!(10, results[0].0.id);
///     assert_eq!(Point2::new(6., 5.), results[0].1);
/// }
/// ```
///
pub struct DynamicBoundingVolumeTree<T>
where
    T: TreeValue,
{
    nodes: Vec<Node<T::Bound>>,
    values: Vec<(usize, T)>,
    free_list: Vec<usize>,
    updated_list: Vec<usize>,
    root_index: usize,
    refit_nodes: Vec<(u32, usize)>,
}

impl<T> Default for DynamicBoundingVolumeTree<T>
where
    T: TreeValue,
{
    fn default() -> Self {
        DynamicBoundingVolumeTree {
            // we add Nil to first position so only the root node can have parent = 0
            nodes: vec![Node::Nil],
            values: Vec::default(),
            free_list: Vec::default(),
            updated_list: Vec::default(),
            root_index: 0,
            refit_nodes: Vec::default(),
        }
    }
}

impl<T> fmt::Debug for DynamicBoundingVolumeTree<T>
where
    T: TreeValue,
    T::Bound: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "graph tree {{")?;
        for n_index in 1..self.nodes.len() {
            match self.nodes[n_index] {
                Node::Branch(ref b) => {
                    write!(f, "  n_{} [label=\"{:?}\"];", n_index, b.bound)?;
                    write!(f, "  n_{} -- n_{};", n_index, b.left)?;
                    write!(f, "  n_{} -- n_{};", n_index, b.right)?;
                }

                Node::Leaf(ref l) => {
                    write!(f, "  n_{} [label=\"{:?}\"];", n_index, l.bound)?;
                }

                Node::Nil => (),
            }
        }
        write!(f, "}}")
    }
}

/// Branch node
#[derive(Debug)]
struct Branch<B> {
    parent: usize,
    left: usize,
    right: usize,
    height: u32,
    bound: B,
}

/// Leaf node
#[derive(Debug)]
struct Leaf<B> {
    parent: usize,
    value: usize,
    bound: B,
}

/// Nodes
#[derive(Debug)]
enum Node<B> {
    Branch(Branch<B>),
    Leaf(Leaf<B>),
    Nil,
}

impl<T> DynamicBoundingVolumeTree<T>
where
    T: TreeValue,
    T::Bound: Clone + Contains<T::Bound> + Union<T::Bound, Output = T::Bound> + SurfaceArea,
{
    /// Create a new tree.
    ///
    /// ### Type parameters:
    ///
    /// - `T`: A type that implements [`TreeValue`](trait.TreeValue.html), and is usable in the
    ///        tree. Needs to be able to store the node index of itself, and handle its own bound
    ///        and fattened bound.
    /// - `T::Bound`: Bounding volume type that implements the following collision-rs traits:
    ///              [`Contains`][1] on itself, [`Union`][2] on itself, and [`SurfaceArea`][3].
    ///
    /// [1]: ../trait.Contains.html
    /// [2]: ../trait.Union.html
    /// [3]: ../trait.SurfaceArea.html
    ///
    pub fn new() -> Self {
        Default::default()
    }

    /// Return the number of nodes in the tree.
    ///
    pub fn size(&self) -> usize {
        // -1 because the first slot in the nodes vec is never used
        self.nodes.len() - self.free_list.len() - 1
    }

    /// Return the height of the root node. Leafs are considered to have height 1.
    ///
    pub fn height(&self) -> u32 {
        if self.values.is_empty() {
            0
        } else {
            match self.nodes[self.root_index] {
                Node::Branch(ref b) => b.height,
                Node::Leaf(_) => 1,
                Node::Nil => 0,
            }
        }
    }

    /// Get an immutable list of all values in the tree.
    ///
    /// ### Returns
    ///
    /// A immutable reference to the [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html)
    /// of values in the tree.
    ///
    pub fn values(&self) -> &Vec<(usize, T)> {
        &self.values
    }

    /// Get a mutable list of all values in the tree.
    ///
    /// Do not insert or remove values directly in this list, instead use
    /// [`insert`](struct.DynamicBoundingVolumeTree.html#method.insert) and
    /// [`remove`](struct.DynamicBoundingVolumeTree.html#method.remove)
    /// on the tree. It is allowed to change the order of the values, but when doing so it is
    /// required to use
    /// [`reindex_values`](struct.DynamicBoundingVolumeTree.html#method.reindex_values)
    /// after changing the order, and before any other operation
    /// is performed on the tree. Otherwise the internal consistency of the tree will be broken.
    ///
    /// Do not change the first value in the tuple, this is the node index of the value, and without
    /// that the tree will not function.
    ///
    /// ### Returns
    ///
    /// A mutable reference to the [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html)
    /// of values in the tree.
    ///
    pub fn values_mut(&mut self) -> &mut Vec<(usize, T)> {
        &mut self.values
    }

    /// Reindex the values list, making sure that nodes in the tree point to the correct entry in
    /// the values list.
    ///
    /// Complexity is O(n).
    ///
    pub fn reindex_values(&mut self) {
        for i in 0..self.values.len() {
            if let Node::Leaf(ref mut leaf) = self.nodes[self.values[i].0] {
                leaf.value = i;
            }
        }
    }

    /// Clear the tree.
    ///
    /// Will remove all nodes and their values.
    ///
    pub fn clear(&mut self) {
        self.root_index = 0;
        self.nodes = vec![Node::Nil];
        self.free_list.clear();
        self.refit_nodes.clear();
        self.values.clear();
    }

    /// Return the value index for the given node index.
    pub fn value_index(&self, node_index: usize) -> Option<usize> {
        match self.nodes[node_index] {
            Node::Leaf(ref leaf) => Some(leaf.value),
            _ => None,
        }
    }

    /// Query the tree for all leafs that the given visitor accepts.
    ///
    /// Will do a depth first search of the tree and pass all bounding volumes on the way to the
    /// visitor.
    ///
    /// This function have approximate complexity O(log^2 n).
    ///
    /// ### Parameters:
    ///
    /// - `visitor`: The visitor to check for bounding volume tests.
    ///
    /// ### Type parameters:
    ///
    /// - `V`: Type that implements of [`Visitor`](trait.Visitor.html)
    ///
    /// ### Returns
    ///
    /// Will return a list of tuples of values accepted and the result returned by the visitor for
    /// the acceptance test.
    ///
    pub fn query<V>(&self, visitor: &mut V) -> Vec<(&T, V::Result)>
    where
        V: Visitor<Bound = T::Bound>,
    {
        self.query_for_indices(visitor)
            .into_iter()
            .map(|(value_index, result)| (&self.values[value_index].1, result))
            .collect()
    }

    /// Query the tree for all leafs that the given visitor accepts.
    ///
    /// Will do a depth first search of the tree and pass all bounding volumes on the way to the
    /// visitor.
    ///
    /// This function have approximate complexity O(log^2 n).
    ///
    /// ### Parameters:
    ///
    /// - `visitor`: The visitor to check for bounding volume tests.
    ///
    /// ### Type parameters:
    ///
    /// - `V`: Type that implements of [`Visitor`](trait.Visitor.html)
    ///
    /// ### Returns
    ///
    /// Will return a list of tuples of value indices accepted and the result returned by the
    /// visitor for the acceptance test.
    ///
    pub fn query_for_indices<V>(&self, visitor: &mut V) -> Vec<(usize, V::Result)>
    where
        V: Visitor<Bound = T::Bound>,
    {
        let mut stack = [0; 256];
        stack[0] = self.root_index;
        let mut stack_pointer = 1;
        let mut values = Vec::default();
        while stack_pointer > 0 {
            // depth search, use last added as next test subject
            stack_pointer -= 1;
            let node_index = stack[stack_pointer];
            let node = &self.nodes[node_index];

            match *node {
                Node::Leaf(ref leaf) => {
                    // if we encounter a leaf, do a real bound intersection test, and add to return
                    // values if there's an intersection
                    if let Some(result) = visitor.accept(self.values[leaf.value].1.bound(), true) {
                        values.push((leaf.value, result));
                    }
                }

                // if we encounter a branch, do intersection test, and push the children if the
                // branch intersected
                Node::Branch(ref branch) => if visitor.accept(&branch.bound, false).is_some() {
                    stack[stack_pointer] = branch.left;
                    stack[stack_pointer + 1] = branch.right;
                    stack_pointer += 2;
                },
                Node::Nil => (),
            }
        }
        values
    }

    /// Update a node in the tree with a new value.
    ///
    /// The node will be fed its node_index after updating in the tree, so there is no need to
    /// add that manually in the value.
    ///
    /// Will cause the node to be updated and be flagged as updated, which will cause
    /// [`update`](struct.DynamicBoundingVolumeTree.html#method.update) to process the node the next
    /// time it is called.
    ///
    /// ### Parameters
    ///
    /// - `node_index`: index of the node to update
    /// - `new_value`: the new value to write in that node
    ///
    pub fn update_node(&mut self, node_index: usize, new_value: T) {
        if let Node::Leaf(ref mut leaf) = self.nodes[node_index] {
            self.values[leaf.value].1 = new_value;
        }
        self.flag_updated(node_index);
    }

    /// Flag a node as having been updated (moved/rotated).
    ///
    /// Will cause [`update`](struct.DynamicBoundingVolumeTree.html#method.update) to process the
    /// node the next time it is called.
    ///
    /// ### Parameters
    ///
    /// - `node_index`: the node index of the updated node
    ///
    pub fn flag_updated(&mut self, node_index: usize) {
        self.updated_list.push(node_index);
    }

    /// Go through the updated list and check the fat bounds in the tree.
    ///
    /// After updating values in the values list, it is possible that some of the leafs values have
    /// outgrown their fat bounds. If so, they may need to be moved in the tree. This is done during
    /// refitting.
    ///
    /// Note that no parents have their bounds/height updated directly by this function, instead
    /// [`do_refit`](struct.DynamicBoundingVolumeTree.html#method.do_refit) should be called after
    /// all insert/remove/updates have been performed this frame.
    ///
    pub fn update(&mut self) {
        let nodes = self.updated_list
            .iter()
            .filter_map(|&index| {
                if let Node::Leaf(ref l) = self.nodes[index] {
                    if !l.bound.contains(self.values[l.value].1.bound()) {
                        Some((
                            index,
                            l.parent,
                            self.values[l.value].1.get_bound_with_margin(),
                        ))
                    } else {
                        None
                    }
                } else {
                    None
                }
            })
            .collect::<Vec<(usize, usize, T::Bound)>>();

        for (node_index, parent_index, fat_bound) in nodes {
            if let Node::Leaf(ref mut leaf) = self.nodes[node_index] {
                leaf.bound = fat_bound;
            }
            self.mark_for_refit(parent_index, 2);
        }

        self.updated_list.clear();
    }

    /// Utility method to perform updates and refitting. Should be called once per frame.
    ///
    /// Will in turn call [`update`](struct.DynamicBoundingVolumeTree.html#method.update), followed
    /// by [`do_refit`](struct.DynamicBoundingVolumeTree.html#method.do_refit).
    ///
    pub fn tick(&mut self) {
        self.update();
        self.do_refit();
    }

    /// Insert a value into the tree.
    ///
    /// This will search the tree for the best leaf to pair the value up with, using the surface
    /// area of the value's bounding volume as the main heuristic. Will always cause a new branch
    /// node and a new leaf node (containing the given value) to be added to the tree.
    /// This is to keep the invariant of branches always having 2 children true.
    ///
    /// This function should have approximate complexity O(log^2 n).
    ///
    /// Note that no parents have their bounds/height updated directly by this function, instead
    /// [`do_refit`](struct.DynamicBoundingVolumeTree.html#method.do_refit) should be called after
    /// all insert/remove/updates have been performed this frame.
    ///
    /// ### Parameters
    ///
    /// - `value`: The value to insert into the tree.
    ///
    /// ### Returns
    ///
    /// The node index of the inserted value. This value should never change after insertion.
    ///
    pub fn insert(&mut self, value: T) -> usize {
        let fat_bound = value.get_bound_with_margin();
        let value_index = self.values.len();
        self.values.push((0, value));

        // Create a new leaf node for the given value
        let mut new_leaf = Leaf {
            parent: 0,
            value: value_index,
            bound: fat_bound,
        };

        // If the root index is 0, this is the first node inserted, and we can circumvent a lot of
        // checks.
        if self.root_index == 0 {
            self.root_index = self.nodes.len();
            self.nodes.push(Node::Leaf(new_leaf));
            self.values[value_index].0 = self.root_index;
            self.root_index
        } else {
            // Start searching from the root node
            let mut node_index = self.root_index;

            // We will always insert a branch node and the new leaf node, so get 2 new indices
            // into the node list
            let (new_branch_index, new_leaf_index) = self.next_free();
            // We need to tell the value what it's node index is
            self.values[value_index].0 = new_leaf_index;
            // The new leaf will always be a child of the new branch node.
            new_leaf.parent = new_branch_index;

            let mut branch_parent_index = 0;

            loop {
                // If we encounter a leaf node, we've found the place where we want to add the new
                // nodes. The branch node will be inserted into the tree here, and this node will be
                // moved down as the left child of the new branch node, and the new leaf will be the
                // right child.
                let add_branch = match self.nodes[node_index] {
                    Node::Leaf(ref leaf) => {
                        let new_branch = Branch {
                            left: node_index,      // old leaf at the current position is left child
                            right: new_leaf_index, // new leaf node is the right child
                            parent: leaf.parent,   // parent of the branch is the old leaf parent
                            height: 2, // leafs have height 1, so new branch have height 2
                            bound: leaf.bound.union(&new_leaf.bound),
                        };
                        Some((node_index, new_branch))
                    }

                    // If we hit a branch, we compute the surface area of the bounding volumes for
                    // if the new leaf was added to the right or left. Whichever surface area is
                    // lowest will decide which child to go to next.
                    Node::Branch(ref branch) => {
                        let left_bound = get_bound(&self.nodes[branch.left]);
                        let right_bound = get_bound(&self.nodes[branch.right]);
                        let left_area = left_bound.union(&new_leaf.bound).surface_area();
                        let right_area = right_bound.union(&new_leaf.bound).surface_area();
                        if left_area < right_area {
                            node_index = branch.left;
                        } else {
                            node_index = branch.right;
                        }
                        None
                    }

                    Node::Nil => break,
                };

                // time to actually update the tree
                if let Some((leaf_index, branch)) = add_branch {
                    // the old leaf node needs to point to the new branch node as its parent
                    if let Node::Leaf(ref mut n) = self.nodes[leaf_index] {
                        n.parent = new_branch_index;
                    };

                    // if the old leaf node wasn't the root of tree, we update it's parent to point
                    // to the new branch node insteaf of the old leaf node
                    branch_parent_index = branch.parent;
                    if branch.parent != 0 {
                        if let Node::Branch(ref mut n) = self.nodes[branch.parent] {
                            if n.left == leaf_index {
                                n.left = new_branch_index;
                            } else {
                                n.right = new_branch_index;
                            }
                        }
                    }

                    // insert to new branch and leaf nodes
                    self.nodes[new_branch_index] = Node::Branch(branch);
                    self.nodes[new_leaf_index] = Node::Leaf(new_leaf);

                    // if the leaf node was the root of the tree,
                    // the new root is the new branch node
                    if leaf_index == self.root_index {
                        self.root_index = new_branch_index;
                    }
                    break;
                }
            }

            // mark the new branch nodes parent for bounds/height updating and possible rotation
            if branch_parent_index != 0 {
                self.mark_for_refit(branch_parent_index, 3);
            }

            new_leaf_index
        }
    }

    /// Remove the node with the given node index.
    ///
    /// The reason this function takes the node index and not a reference to the value, is because
    /// the only way to get at the values in the tree is by doing a mutable borrow, making this
    /// function unusable.
    ///
    /// If the given node index points to a non-leaf, this function is effectively a nop.
    /// Else the leaf node and it's parent branch node will be removed, and the leaf nodes sibling
    /// will take the place of the parent branch node in the tree.
    ///
    /// Note that no parents have their bounds/height updated directly by this function, instead
    /// [`do_refit`](struct.DynamicBoundingVolumeTree.html#method.do_refit) should be called after
    /// all insert/remove/updates have been performed this frame.
    ///
    /// This function should have approximate complexity O(log^2 n).
    ///
    /// ### Parameters
    ///
    /// - `node_index`: index of the leaf to remove
    ///
    /// ### Returns
    ///
    /// If a value was removed, the value is returned, otherwise None.
    ///
    pub fn remove(&mut self, node_index: usize) -> Option<T> {
        let (value_index, parent_index) = if let Node::Leaf(ref leaf) = self.nodes[node_index] {
            (leaf.value, leaf.parent)
        } else {
            // If a value points to a non-leaf something has gone wrong,
            // ignore remove and continue with life
            return None;
        };
        // remove from values list and update node list with new value indices
        let (_, value) = self.values.swap_remove(value_index);
        // we only need to update the node for the value that we swapped into the old values place
        if value_index < self.values.len() {
            // should only fail if we just removed the last value
            if let Node::Leaf(ref mut leaf) = self.nodes[self.values[value_index].0] {
                leaf.value = value_index;
            }
        }

        // remove from node list and add index to free list
        self.nodes[node_index] = Node::Nil;
        self.free_list.push(node_index);

        if parent_index != 0 {
            // remove parent branch from node list and add index to free list
            let (parent_parent_index, sibling_index) =
                if let Node::Branch(ref branch) = self.nodes[parent_index] {
                    (
                        branch.parent,
                        if branch.left == node_index {
                            branch.right
                        } else {
                            branch.left
                        },
                    )
                } else {
                    return Some(value);
                };
            self.nodes[parent_index] = Node::Nil;
            self.free_list.push(parent_index);

            // set sibling parent to parent.parent
            match self.nodes[sibling_index] {
                Node::Branch(ref mut branch) => branch.parent = parent_parent_index,
                Node::Leaf(ref mut leaf) => leaf.parent = parent_parent_index,
                Node::Nil => (),
            }

            // if parents parent is 0, the sibling is the last node in the tree and becomes the new
            // root node
            if parent_parent_index == 0 {
                self.root_index = sibling_index;
            } else {
                // else we have a remaining branch, and need to update either left or right to point
                // to the sibling, based on where the old branch node was
                if let Node::Branch(ref mut b) = self.nodes[parent_parent_index] {
                    if b.left == parent_index {
                        b.left = sibling_index;
                    } else {
                        b.right = sibling_index;
                    }
                }

                // mark parents parent for recalculation
                self.mark_for_refit(parent_parent_index, 0);
            }
        } else {
            // if parent was 0, this was the last node in the tree, and the tree is now empty.
            // reset all values.
            self.clear();
        }

        Some(value)
    }

    /// Go through the list of nodes marked for refitting, update their bounds/heights and check if
    /// any of them need to be rotated to new locations.
    ///
    /// This method have worst case complexity O(m * log^2 n), where m is the number of nodes in the
    /// refit list.
    ///
    pub fn do_refit(&mut self) {
        while !self.refit_nodes.is_empty() {
            let (_, node_index) = self.refit_nodes.remove(0);
            self.refit_node(node_index);
        }
    }

    /// Get two new node indices, where nodes can be inserted in the tree.
    ///
    fn next_free(&mut self) -> (usize, usize) {
        (self.take_free(), self.take_free())
    }

    /// Get a new node index, where a node can be inserted in the tree.
    ///
    fn take_free(&mut self) -> usize {
        if self.free_list.is_empty() {
            let index = self.nodes.len();
            self.nodes.push(Node::Nil);
            index
        } else {
            self.free_list.remove(0)
        }
    }

    /// Add the given node to the refitting list.
    ///
    /// The refit list is sorted by the height of the node, and only have the same value
    /// once, any duplicates are rejected. This because we don't want to refit the same node
    /// twice.
    ///
    /// ### Parameters
    ///
    /// - `node_index`: index of the node to do refitting on.
    /// - `min_height`: the minimum height the node has. Used primarily by insertion where we can't
    ///                 be sure that the node has been refitted yet and might have an incorrect
    ///                 height
    ///
    fn mark_for_refit(&mut self, node_index: usize, min_height: u32) {
        let node_height = match self.nodes[node_index] {
            Node::Branch(ref b) => b.height,
            _ => 0,
        };
        let height = max(node_height, min_height);
        let value = (height, node_index);
        match self.refit_nodes.binary_search(&value) {
            Ok(_) => (),
            Err(i) => self.refit_nodes.insert(i, value),
        }
    }

    /// Actually refit a node in the tree. This will check the node for rotation, and if rotated,
    /// will update the bound/height of itself and any other rotated nodes, and also mark its parent
    /// for refitting.
    ///
    fn refit_node(&mut self, node_index: usize) {
        if let Some((parent_index, height)) = self.recalculate_node(node_index) {
            if parent_index != 0 {
                self.mark_for_refit(parent_index, height + 1);
            }
        }

        // Only do rotations occasionally, as they are fairly expensive, and shouldn't be overused.
        // For most scenarios, the majority of shapes will not have moved, so this is fine.
        if rand::thread_rng().gen_range(0, 100) < PERFORM_ROTATION_PERCENTAGE {
            self.rotate(node_index);
        }
    }

    /// Recalculate the bound and height of the node.
    ///
    fn recalculate_node(&mut self, node_index: usize) -> Option<(usize, u32)> {
        let (height, bound, parent_index) = {
            let (left_height, left_bound, right_height, right_bound, parent_index) =
                if let Node::Branch(ref branch) = self.nodes[node_index] {
                    (
                        get_height(&self.nodes[branch.left]),
                        get_bound(&self.nodes[branch.left]),
                        get_height(&self.nodes[branch.right]),
                        get_bound(&self.nodes[branch.right]),
                        branch.parent,
                    )
                } else {
                    return None;
                };
            (
                1 + max(left_height, right_height),
                left_bound.union(right_bound),
                parent_index,
            )
        };
        if let Node::Branch(ref mut branch) = self.nodes[node_index] {
            branch.height = height;
            branch.bound = bound;
        }

        Some((parent_index, height))
    }

    /// Check if the node needs to be rotated, and perform the rotation if that is the case.
    ///
    /// ### Parameters:
    ///
    /// - `node_index`: index of the node to check for rotation
    ///
    /// ### Returns
    ///
    /// The parent index of the given node
    ///
    fn rotate(&mut self, node_index: usize) -> Option<usize> {
        let improvement_percentage: <T::Bound as SurfaceArea>::Scalar =
            NumCast::from(SURFACE_AREA_IMPROVEMENT_FOR_ROTATION).unwrap();

        let (left_index, right_index, my_surface_area, parent_index) =
            if let Node::Branch(ref branch) = self.nodes[node_index] {
                (
                    branch.left,
                    branch.right,
                    branch.bound.surface_area(),
                    branch.parent,
                )
            } else {
                return None;
            };

        let left_is_leaf = is_leaf(&self.nodes[left_index]);
        let right_is_leaf = is_leaf(&self.nodes[right_index]);

        // if the node is a grandparent, we can do rotation checks
        if !left_is_leaf || !right_is_leaf {
            let (rot, min_sa) = get_best_rotation(
                &self.nodes,
                left_index,
                right_index,
                my_surface_area,
                left_is_leaf,
                right_is_leaf,
            );

            // we now know which rotation will give us the best surface area
            // only do actual rotation if the surface area is reduced by atleast 25%
            if (my_surface_area - min_sa) / my_surface_area > improvement_percentage {
                match rot {
                    // do nothing
                    Rotation::None => (),

                    // swap left child with right left grandchild
                    // right child and node needs to be recalculated
                    Rotation::LeftRightLeft => {
                        let right_left_index = get_left_index(&self.nodes[right_index]);
                        swap(
                            &mut self.nodes,
                            left_index,
                            right_left_index,
                            node_index,
                            right_index,
                        );
                        self.recalculate_node(right_index);
                        self.recalculate_node(node_index);
                    }

                    // swap left child with right right grandchild
                    // right child and node needs to be recalculated
                    Rotation::LeftRightRight => {
                        let right_right_index = get_right_index(&self.nodes[right_index]);
                        swap(
                            &mut self.nodes,
                            left_index,
                            right_right_index,
                            node_index,
                            right_index,
                        );
                        self.recalculate_node(right_index);
                        self.recalculate_node(node_index);
                    }

                    // swap right child with left left grandchild
                    // left child and node needs to be recalculated
                    Rotation::RightLeftLeft => {
                        let left_left_index = get_left_index(&self.nodes[left_index]);
                        swap(
                            &mut self.nodes,
                            left_left_index,
                            right_index,
                            left_index,
                            node_index,
                        );
                        self.recalculate_node(left_index);
                        self.recalculate_node(node_index);
                    }

                    // swap right child with left right grandchild
                    // left child and node needs to be recalculated
                    Rotation::RightLeftRight => {
                        let left_right_index = get_right_index(&self.nodes[left_index]);
                        swap(
                            &mut self.nodes,
                            left_right_index,
                            right_index,
                            left_index,
                            node_index,
                        );
                        self.recalculate_node(left_index);
                        self.recalculate_node(node_index);
                    }

                    // swap left left grandchild with right left grandchild
                    // left child, right child and node needs to be recalculated
                    Rotation::LeftLeftRightLeft => {
                        let left_left_index = get_left_index(&self.nodes[left_index]);
                        let right_left_index = get_left_index(&self.nodes[right_index]);
                        swap(
                            &mut self.nodes,
                            left_left_index,
                            right_left_index,
                            left_index,
                            right_index,
                        );
                        self.recalculate_node(left_index);
                        self.recalculate_node(right_index);
                        self.recalculate_node(node_index);
                    }

                    // swap left left grandchild with right right grandchild
                    // left child, right child and node needs to be recalculated
                    Rotation::LeftLeftRightRight => {
                        let left_left_index = get_left_index(&self.nodes[left_index]);
                        let right_right_index = get_right_index(&self.nodes[right_index]);
                        swap(
                            &mut self.nodes,
                            left_left_index,
                            right_right_index,
                            left_index,
                            right_index,
                        );
                        self.recalculate_node(left_index);
                        self.recalculate_node(right_index);
                        self.recalculate_node(node_index);
                    }
                }
            }
        }

        Some(parent_index)
    }
}

enum Rotation {
    None,
    LeftRightLeft,
    LeftRightRight,
    RightLeftLeft,
    RightLeftRight,
    LeftLeftRightLeft,
    LeftLeftRightRight,
}

/// Swap two nodes in the tree.
///
/// left_parent.`[left,right]` = right_swap
/// right_parent.`[left,right]` = left_swap
/// left_swap.parent = right_parent
/// right_swap.parent = left_parent
///
#[inline]
fn swap<B>(
    nodes: &mut Vec<Node<B>>,
    left_swap_index: usize,
    right_swap_index: usize,
    left_parent_index: usize,
    right_parent_index: usize,
) {
    if let Node::Branch(ref mut left_parent) = nodes[left_parent_index] {
        if left_parent.left == left_swap_index {
            left_parent.left = right_swap_index;
        } else {
            left_parent.right = right_swap_index;
        }
    }

    if let Node::Branch(ref mut right_parent) = nodes[right_parent_index] {
        if right_parent.left == right_swap_index {
            right_parent.left = left_swap_index;
        } else {
            right_parent.right = left_swap_index;
        }
    }

    match nodes[left_swap_index] {
        Node::Branch(ref mut left) => left.parent = right_parent_index,
        Node::Leaf(ref mut left) => left.parent = right_parent_index,
        _ => (),
    }

    match nodes[right_swap_index] {
        Node::Branch(ref mut rl) => rl.parent = left_parent_index,
        Node::Leaf(ref mut rl) => rl.parent = left_parent_index,
        _ => (),
    }
}

/// Calculate the best rotation for a given grandparent node in the tree
#[inline]
fn get_best_rotation<B>(
    nodes: &[Node<B>],
    left_index: usize,
    right_index: usize,
    node_surface_area: <B as SurfaceArea>::Scalar,
    left_is_leaf: bool,
    right_is_leaf: bool,
) -> (Rotation, <B as SurfaceArea>::Scalar)
where
    B: Union<B, Output = B> + SurfaceArea,
{
    let mut rot = Rotation::None;
    let mut min_sa = node_surface_area;

    // we need the left and right child bounds for 4 tests
    let l_bound = get_bound(&nodes[left_index]);
    let r_bound = get_bound(&nodes[right_index]);

    // if the right child is not a leaf, we want to consider swapping its children with
    // either the left child or the left left grandchild
    if !right_is_leaf {
        let (rl_bound, rr_bound) = match nodes[right_index] {
            Node::Branch(ref right) => (
                get_bound(&nodes[right.left]),
                get_bound(&nodes[right.right]),
            ),
            _ => panic!(),
        };

        // check for left child swapped with right left grandchild
        let l_rl_sa = sa(rl_bound, l_bound, rr_bound);
        if l_rl_sa < min_sa {
            rot = Rotation::LeftRightLeft;
            min_sa = l_rl_sa;
        }

        // check for left child swapped with right right grandchild
        let l_rr_sa = sa(rr_bound, l_bound, rl_bound);
        if l_rr_sa < min_sa {
            rot = Rotation::LeftRightRight;
            min_sa = l_rr_sa;
        }

        // check for left left grandchild swapped with either of the right grandchildren
        if !left_is_leaf {
            let (ll_bound, lr_bound) = match nodes[left_index] {
                Node::Branch(ref left) => {
                    (get_bound(&nodes[left.left]), get_bound(&nodes[left.right]))
                }
                _ => panic!(),
            };

            // check for left left grandchild swapped with right left grandchild
            let ll_rl_sa = sa(&rl_bound.union(lr_bound), ll_bound, rr_bound);
            if ll_rl_sa < min_sa {
                rot = Rotation::LeftLeftRightLeft;
                min_sa = ll_rl_sa;
            }

            // check for left left grandchild swapped with right right grandchild
            let ll_rr_sa = sa(&rr_bound.union(lr_bound), rl_bound, ll_bound);
            if ll_rr_sa < min_sa {
                rot = Rotation::LeftLeftRightRight;
                min_sa = ll_rr_sa;
            }

            // we don't need to check for left right grandchild swapped with any of the right
            // grandchildren. this would only result in mirrored trees and have the same cost
            // as other cases, making it redundant work
        }
    }

    // if the left child is not a leaf, we want to consider swapping its children with the
    // right child
    if !left_is_leaf {
        let (ll_bound, lr_bound) = match nodes[left_index] {
            Node::Branch(ref left) => (get_bound(&nodes[left.left]), get_bound(&nodes[left.right])),
            _ => panic!(),
        };

        // check for right child swapped with left left grandchild
        let r_ll_sa = sa(ll_bound, r_bound, lr_bound);
        if r_ll_sa < min_sa {
            rot = Rotation::RightLeftLeft;
            min_sa = r_ll_sa;
        }

        // check for right child swapped with left right grandchild
        let r_lr_sa = sa(lr_bound, r_bound, ll_bound);
        if r_lr_sa < min_sa {
            rot = Rotation::RightLeftRight;
            min_sa = r_lr_sa;
        }
    }

    (rot, min_sa)
}

/// Calculate the surface area of 3 combined bounding volumes, a.union(b.union(c)).
#[inline]
fn sa<B>(a: &B, b: &B, c: &B) -> <B as SurfaceArea>::Scalar
where
    B: Union<B, Output = B> + SurfaceArea,
{
    a.union(&b.union(c)).surface_area()
}

#[inline]
fn get_left_index<B>(node: &Node<B>) -> usize {
    match *node {
        Node::Branch(ref b) => b.left,
        _ => panic!(),
    }
}

#[inline]
fn get_right_index<B>(node: &Node<B>) -> usize {
    match *node {
        Node::Branch(ref b) => b.right,
        _ => panic!(),
    }
}

#[inline]
fn is_leaf<B>(node: &Node<B>) -> bool {
    match *node {
        Node::Leaf(_) => true,
        _ => false,
    }
}

/// Get the height of the node, regardless of node type. Leafs have height 1, nil height 0.
///
#[inline]
fn get_height<B>(node: &Node<B>) -> u32 {
    match *node {
        Node::Branch(ref branch) => branch.height,
        Node::Leaf(_) => 1,
        Node::Nil => 0,
    }
}

/// Get the bound of the node. Will panic if node is nil.
///
#[inline]
fn get_bound<B>(node: &Node<B>) -> &B {
    match *node {
        Node::Branch(ref branch) => &branch.bound,
        Node::Leaf(ref leaf) => &leaf.bound,
        Node::Nil => panic!(),
    }
}