1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
//! Rectangle primitive

use cgmath::{BaseFloat, Point2, Vector2};
use cgmath::prelude::*;

use {Aabb2, Ray2};
use prelude::*;
use primitive::util::get_max_point;

/// Rectangle primitive.
///
/// Have a cached set of corner points to speed up computation.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "eders", derive(Serialize, Deserialize))]
pub struct Rectangle<S> {
    /// Dimensions of the rectangle
    dim: Vector2<S>,
    half_dim: Vector2<S>,
    corners: Vec<Point2<S>>,
}

impl<S> Rectangle<S>
where
    S: BaseFloat,
{
    /// Create a new rectangle primitive from component dimensions
    pub fn new(dim_x: S, dim_y: S) -> Self {
        Self::new_impl(Vector2::new(dim_x, dim_y))
    }

    /// Create a new rectangle primitive from a vector of component dimensions
    pub fn new_impl(dim: Vector2<S>) -> Self {
        let half_dim = dim / (S::one() + S::one());
        Rectangle {
            dim,
            half_dim,
            corners: Self::generate_corners(&half_dim),
        }
    }

    fn generate_corners(half_dim: &Vector2<S>) -> Vec<Point2<S>> {
        vec![
            Point2::new(half_dim.x, half_dim.y),
            Point2::new(-half_dim.x, half_dim.y),
            Point2::new(-half_dim.x, -half_dim.y),
            Point2::new(half_dim.x, -half_dim.y),
        ]
    }
}

impl<S> Primitive for Rectangle<S>
where
    S: BaseFloat,
{
    type Point = Point2<S>;

    fn support_point<T>(&self, direction: &Vector2<S>, transform: &T) -> Point2<S>
    where
        T: Transform<Point2<S>>,
    {
        get_max_point(self.corners.iter(), direction, transform)
    }
}

impl<S> ComputeBound<Aabb2<S>> for Rectangle<S>
where
    S: BaseFloat,
{
    fn compute_bound(&self) -> Aabb2<S> {
        Aabb2::new(
            Point2::from_vec(-self.half_dim),
            Point2::from_vec(self.half_dim),
        )
    }
}

impl<S> Discrete<Ray2<S>> for Rectangle<S>
where
    S: BaseFloat,
{
    /// Ray must be in object space of the rectangle
    fn intersects(&self, ray: &Ray2<S>) -> bool {
        self.compute_bound().intersects(ray)
    }
}

impl<S> Continuous<Ray2<S>> for Rectangle<S>
where
    S: BaseFloat,
{
    type Result = Point2<S>;

    /// Ray must be in object space of the rectangle
    fn intersection(&self, ray: &Ray2<S>) -> Option<Point2<S>> {
        self.compute_bound().intersection(ray)
    }
}

#[cfg(test)]
mod tests {
    use cgmath::{Basis2, Decomposed, Point2, Rad, Vector2};

    use super::*;

    #[test]
    fn test_rectangle_bound() {
        let r = Rectangle::new(10., 10.);
        assert_eq!(bound(-5., -5., 5., 5.), r.compute_bound())
    }

    #[test]
    fn test_rectangle_ray_discrete() {
        let rectangle = Rectangle::new(10., 10.);
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(-1., 0.));
        assert!(rectangle.intersects(&ray));
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(0., 1.));
        assert!(!rectangle.intersects(&ray));
    }

    #[test]
    fn test_rectangle_ray_discrete_transformed() {
        let rectangle = Rectangle::new(10., 10.);
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(-1., 0.));
        let t = transform(0., 0., 0.);
        assert!(rectangle.intersects_transformed(&ray, &t));
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(-1., 0.));
        let t = transform(0., 20., 0.);
        assert!(!rectangle.intersects_transformed(&ray, &t));
    }

    #[test]
    fn test_rectangle_ray_continuous() {
        let rectangle = Rectangle::new(10., 10.);
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(-1., 0.));
        assert_eq!(Some(Point2::new(5., 0.)), rectangle.intersection(&ray));
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(0., 1.));
        assert_eq!(None, rectangle.intersection(&ray));
    }

    #[test]
    fn test_rectangle_ray_continuous_transformed() {
        let rectangle = Rectangle::new(10., 10.);
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(-1., 0.));
        let t = transform(0., 0., 0.);
        assert_eq!(
            Some(Point2::new(5., 0.)),
            rectangle.intersection_transformed(&ray, &t)
        );
        let ray = Ray2::new(Point2::new(20., 0.), Vector2::new(-1., 0.));
        let t = transform(0., 20., 0.);
        assert_eq!(None, rectangle.intersection_transformed(&ray, &t));
        let t = transform(0., 0., 0.3);
        let p = rectangle.intersection_transformed(&ray, &t).unwrap();
        assert_ulps_eq!(5.233758, p.x);
        assert_ulps_eq!(0., p.y);
    }

    // util
    fn transform(dx: f32, dy: f32, rot: f32) -> Decomposed<Vector2<f32>, Basis2<f32>> {
        Decomposed {
            scale: 1.,
            rot: Rotation2::from_angle(Rad(rot)),
            disp: Vector2::new(dx, dy),
        }
    }

    fn bound(min_x: f32, min_y: f32, max_x: f32, max_y: f32) -> Aabb2<f32> {
        Aabb2::new(Point2::new(min_x, min_y), Point2::new(max_x, max_y))
    }
}