1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use std::fmt::Debug;

use cgmath::BaseNum;
use cgmath::prelude::*;

use Aabb;

/// An intersection test with a result.
///
/// An example would be a Ray vs AABB intersection test that returns a Point in space.
///
pub trait Continuous<RHS> {
    /// Result returned by the intersection test
    type Result;

    /// Intersection test
    fn intersection(&self, &RHS) -> Option<Self::Result>;
}

/// A boolean intersection test.
///
pub trait Discrete<RHS> {
    /// Intersection test
    fn intersects(&self, &RHS) -> bool;
}

/// Boolean containment test.
///
pub trait Contains<RHS> {
    /// Containment test
    #[inline]
    fn contains(&self, &RHS) -> bool;
}

/// Shape surface area
///
pub trait SurfaceArea {
    /// Result type returned from surface area computation
    type Scalar: BaseNum;

    /// Compute surface area
    fn surface_area(&self) -> Self::Scalar;
}

/// Build the union of two shapes.
///
pub trait Union<RHS = Self> {
    /// Union shape created
    type Output;

    /// Build the union shape of self and the given shape.
    fn union(&self, &RHS) -> Self::Output;
}

/// Primitive with axis aligned bounding box
pub trait HasAabb {
    /// Bounding box type
    type Aabb: Aabb + Clone + Union<Self::Aabb, Output = Self::Aabb> + Debug;

    /// Get the bounding box of the primitive in local space coordinates.
    fn get_bound(&self) -> Self::Aabb;
}

/// Minkowski support function for primitive
pub trait SupportFunction {
    /// Point type
    type Point: EuclideanSpace;

    /// Get the support point on the shape in a given direction.
    ///
    /// ## Parameters
    ///
    /// - `direction`: The search direction in world space.
    /// - `transform`: The current local to world transform for this primitive.
    ///
    /// ## Returns
    ///
    /// Return the point that is furthest away from the origin, in the given search direction.
    /// For discrete shapes, the furthest vertex is enough, there is no need to do exact
    /// intersection point computation.
    ///
    /// ## Type parameters
    ///
    /// - `P`: Transform type
    fn support_point<T>(
        &self,
        direction: &<Self::Point as EuclideanSpace>::Diff,
        transform: &T,
    ) -> Self::Point
    where
        T: Transform<Self::Point>;
}

/// Discrete intersection test on transformed primitive
pub trait DiscreteTransformed<RHS> {
    /// Point type for transformation of self
    type Point: EuclideanSpace;

    /// Intersection test for transformed self
    fn intersects_transformed<T>(&self, &RHS, &T) -> bool
    where
        T: Transform<Self::Point>;
}

/// Continuous intersection test on transformed primitive
pub trait ContinuousTransformed<RHS> {
    /// Point type for transformation of self
    type Point: EuclideanSpace;

    /// Result of intersection test
    type Result: EuclideanSpace;

    /// Intersection test for transformed self
    fn intersection_transformed<T>(&self, &RHS, &T) -> Option<Self::Result>
    where
        T: Transform<Self::Point>;
}

/// Marker trait for a collision primitive.
pub trait Primitive
    : Debug + Clone + HasAabb + SupportFunction<Point = <<Self as HasAabb>::Aabb as Aabb>::Point>
    {
}

/// Implementation of marker trait for all types where the bounds are fulfilled
impl<T> Primitive for T
where
    T: Debug + Clone + HasAabb + SupportFunction<Point = <<Self as HasAabb>::Aabb as Aabb>::Point>,
{
}

/// Trait used for interpolation of values
///
/// ## Type parameters:
///
/// - `S`: The scalar type used for amount
pub trait Interpolate<S> {
    /// Interpolate between `self` and `other`, using amount to calculate how much of other to use.
    ///
    /// ## Parameters:
    ///
    /// - `amount`: amount in the range 0. .. 1.
    /// - `other`: the other value to interpolate with
    ///
    /// ## Returns
    ///
    /// A new value approximately equal to `self * (1. - amount) + other * amount`.
    fn interpolate(&self, other: &Self, amount: S) -> Self;
}

/// Trait used for interpolation of translation only in transforms
pub trait TranslationInterpolate<S> {
    /// Interpolate between `self` and `other`, using amount to calculate how much of other to use.
    ///
    /// ## Parameters:
    ///
    /// - `amount`: amount in the range 0. .. 1.
    /// - `other`: the other value to interpolate with
    ///
    /// ## Returns
    ///
    /// A new value approximately equal to `self * (1. - amount) + other * amount`.
    fn translation_interpolate(&self, other: &Self, amount: S) -> Self;
}

mod interpolate {
    use super::{Interpolate, TranslationInterpolate};
    use cgmath::{BaseFloat, Basis2, Basis3, Decomposed, Quaternion, Rad};
    use cgmath::prelude::*;

    impl<S> Interpolate<S> for Quaternion<S>
    where
        S: BaseFloat,
    {
        fn interpolate(&self, other: &Self, amount: S) -> Self {
            self.lerp(*other, amount)
        }
    }

    impl<S> Interpolate<S> for Basis3<S>
    where
        S: BaseFloat,
    {
        fn interpolate(&self, other: &Self, amount: S) -> Self {
            Basis3::from(
                Quaternion::from(*self.as_ref()).lerp(Quaternion::from(*other.as_ref()), amount),
            )
        }
    }

    impl<S> Interpolate<S> for Basis2<S>
    where
        S: BaseFloat,
    {
        fn interpolate(&self, other: &Self, amount: S) -> Self {
            // to complex numbers
            let self_mat = self.as_ref();
            let other_mat = other.as_ref();
            let self_c = self_mat.x;
            let other_c = other_mat.x;
            // do interpolation
            let c = self_c.lerp(other_c, amount);
            // to basis
            Rotation2::from_angle(Rad(c.x.acos()))
        }
    }

    impl<V, R> Interpolate<V::Scalar> for Decomposed<V, R>
    where
        V: VectorSpace + InnerSpace,
        R: Interpolate<V::Scalar>,
        V::Scalar: BaseFloat,
    {
        fn interpolate(&self, other: &Self, amount: V::Scalar) -> Self {
            Decomposed {
                disp: self.disp.lerp(other.disp, amount),
                rot: self.rot.interpolate(&other.rot, amount),
                scale: self.scale * (V::Scalar::one() - amount) + other.scale * amount,
            }
        }
    }

    impl<V, R> TranslationInterpolate<V::Scalar> for Decomposed<V, R>
    where
        V: VectorSpace + InnerSpace,
        R: Clone,
        V::Scalar: BaseFloat,
    {
        fn translation_interpolate(&self, other: &Self, amount: V::Scalar) -> Self {
            Decomposed {
                disp: self.disp.lerp(other.disp, amount),
                rot: other.rot.clone(),
                scale: other.scale,
            }
        }
    }
}