1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#![cfg_attr(docsrs, feature(doc_cfg))]
//! Coin CBC Rust bindings
//!
//! This crate exposes safe and efficient bindings to the Coin CBC C
//! API.
//!
//! For more information on how to install the `Cbc` library dependencies,
//! see [the respective README section](https://github.com/KardinalAI/coin_cbc/README.md#prerequisites-installing-cbc-library-files).
//!
//! This project is distributed under the MIT License by
//! [Kardinal](https://kardinal.ai).
//!
//! ## Solving multiple problems in parallel
//!
//! By default, this crate enforces a global lock which will force multiple
//! problems to be solved sequentially even if `solve` is called from multiple
//! threads in parallel. This is because by default, libcbc is not thread safe.
//! If you have compiled your own libcbc with the `CBC_THREAD_SAFE` option,
//! you can disable this behavior by disabling the `singlethread-cbc`
//! feature on this crate. Do not disable this feature if you are not certain
//! that you have a thread safe libcbc, or you will be exposed to memory corruption
//! vulnerabilities.

#![deny(missing_docs)]

pub mod raw;
mod sos_constraints;

pub use raw::Sense;

use crate::raw::SOSConstraintType;
use crate::sos_constraints::SOSConstraints;
use std::collections::BTreeMap;
use std::ffi::CString;
use std::os::raw::c_int;

/// A column identifier.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Col(u32);

impl Col {
    fn as_usize(self) -> usize {
        self.0 as usize
    }
}

/// A row identifier.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Row(u32);
impl Row {
    fn as_usize(self) -> usize {
        self.0 as usize
    }
}

/// A MILP model.
#[derive(Default, Clone)]
pub struct Model {
    num_cols: u32,
    num_rows: u32,
    col_lower: Vec<f64>,
    col_upper: Vec<f64>,
    row_lower: Vec<f64>,
    row_upper: Vec<f64>,
    obj_coefficients: Vec<f64>,
    weights: Vec<BTreeMap<Row, f64>>,
    is_integer: Vec<bool>,
    sense: Sense,
    initial_solution: Option<Vec<f64>>,
    parameters: BTreeMap<CString, CString>,
    sos1: SOSConstraints,
    sos2: SOSConstraints,
}

impl Model {
    /// Gets the current number of rows of the model.
    pub fn num_rows(&self) -> u32 {
        self.num_rows
    }
    /// Gets the current number of columns of the model.
    pub fn num_cols(&self) -> u32 {
        self.num_cols
    }
    /// Removes the initial solution.
    pub fn remove_initial_solution(&mut self) {
        self.initial_solution = None;
    }
    /// Sets the column value to the initial solution.
    ///
    /// If the solution is not present, it will be initialized with 0
    /// for all coefficients.
    pub fn set_col_initial_solution(&mut self, col: Col, value: f64) {
        if self.initial_solution.is_none() {
            self.initial_solution = Some(vec![0.; self.num_cols as usize]);
        }
        let sol = self.initial_solution.as_mut().unwrap();
        sol[col.as_usize()] = value;
    }
    /// Gets the column value to the initial solution.
    pub fn get_col_initial_solution(&self, col: Col) -> Option<f64> {
        self.initial_solution.as_ref().map(|s| s[col.as_usize()])
    }
    /// Sets the initial solution from a `Solution`.
    pub fn set_initial_solution(&mut self, solution: &Solution) {
        for col in self.cols() {
            self.set_col_initial_solution(col, solution.col(col));
        }
    }
    /// Sets a parameter.
    ///
    /// For documentation, launch the `cbc` binary and type `?`.
    pub fn set_parameter(&mut self, key: &str, value: &str) {
        let key = match CString::new(key) {
            Ok(s) => s,
            Err(_) => return,
        };
        let value = match CString::new(value) {
            Ok(s) => s,
            Err(_) => return,
        };
        self.parameters.insert(key, value);
    }
    /// Sets parameters for an iterator.
    pub fn set_parameters(
        &mut self,
        iter: impl IntoIterator<Item = (impl AsRef<str>, impl AsRef<str>)>,
    ) {
        for (k, v) in iter.into_iter() {
            self.set_parameter(k.as_ref(), v.as_ref());
        }
    }
    /// Gets an iterator on the row identifiers.
    pub fn rows(&self) -> impl Iterator<Item = Row> {
        (0..self.num_rows).map(Row)
    }
    /// Gets an iterator on the column identifiers.
    pub fn cols(&self) -> impl Iterator<Item = Col> {
        (0..self.num_cols).map(Col)
    }
    /// Adds a column to the model. Returns the corresponding column
    /// identifier.
    ///
    /// At creation, the bounds of the column are setted to [0, +∞].
    pub fn add_col(&mut self) -> Col {
        let col = Col(self.num_cols);
        self.num_cols += 1;
        self.obj_coefficients.push(0.);
        self.weights.push(Default::default());
        self.is_integer.push(false);
        self.col_lower.push(0.);
        self.col_upper.push(std::f64::INFINITY);
        self.initial_solution.as_mut().map(|sol| sol.push(0.));
        col
    }
    /// Adds an integer variable to the model.
    ///
    /// Equivalent to adding a column and setting it to integer.
    pub fn add_integer(&mut self) -> Col {
        let col = self.add_col();
        self.set_integer(col);
        col
    }
    /// Adds a binary variable to the model.
    ///
    /// Equivalent to adding a column and setting it to binary.
    pub fn add_binary(&mut self) -> Col {
        let col = self.add_col();
        self.set_binary(col);
        col
    }
    /// Adds a row to the model. Returns the corresponding row
    /// identifier.
    ///
    /// At creation, the bounds of the row are setted to [-∞, +∞].
    pub fn add_row(&mut self) -> Row {
        let row = Row(self.num_rows);
        self.num_rows += 1;
        self.row_lower.push(std::f64::NEG_INFINITY);
        self.row_upper.push(std::f64::INFINITY);
        row
    }
    /// Sets the weight corresponding to the given row and column in
    /// the constraint matrix.
    pub fn set_weight(&mut self, row: Row, col: Col, weight: f64) {
        if weight == 0. {
            self.weights[col.as_usize()].remove(&row);
        } else {
            self.weights[col.as_usize()].insert(row, weight);
        }
    }
    /// Changes the given column to integer variable.
    pub fn set_integer(&mut self, col: Col) {
        self.is_integer[col.as_usize()] = true;
    }
    /// Changes the given column to continuous variable.
    pub fn set_continuous(&mut self, col: Col) {
        self.is_integer[col.as_usize()] = false;
    }
    /// Changes the given column to binary variable.
    ///
    /// Equivalent to setting the column as integer and restricting it
    /// to [0, 1].
    pub fn set_binary(&mut self, col: Col) {
        self.set_integer(col);
        self.set_col_lower(col, 0.);
        self.set_col_upper(col, 1.);
    }
    /// Sets the upper bound of the given column.
    pub fn set_col_upper(&mut self, col: Col, value: f64) {
        self.col_upper[col.as_usize()] = value;
    }
    /// Sets the lower bound of the given column.
    pub fn set_col_lower(&mut self, col: Col, value: f64) {
        self.col_lower[col.as_usize()] = value;
    }
    /// Sets the objective coefficient of the given variable.
    pub fn set_obj_coeff(&mut self, col: Col, value: f64) {
        self.obj_coefficients[col.as_usize()] = value;
    }
    /// Sets the upper bound of the given row.
    pub fn set_row_upper(&mut self, row: Row, value: f64) {
        self.row_upper[row.as_usize()] = value;
    }
    /// Sets the lower bound of the given row.
    pub fn set_row_lower(&mut self, row: Row, value: f64) {
        self.row_lower[row.as_usize()] = value;
    }
    /// Force the given row to be equal to the given value.
    ///
    /// Equivalent to setting the upper bound and the lower bound.
    pub fn set_row_equal(&mut self, row: Row, value: f64) {
        self.set_row_upper(row, value);
        self.set_row_lower(row, value);
    }

    /// Add a special ordered set constraint, preventing all but one variable
    /// in a set from being non-zero at the same time.
    /// weights can be used as hints to the optimizer to improve the resolution speed.
    /// In case you don't have any weights for your variables, you can use 1, 2, 3, ...
    /// For more information about SOS weights, see: <http://lpsolve.sourceforge.net/5.5/SOS.htm>
    pub fn add_sos1<I: IntoIterator<Item = (Col, f64)>>(&mut self, columns_and_weights: I) {
        self.sos1
            .add_constraint_with_weights(columns_and_weights.into_iter())
    }

    /// Add a special ordered set constraint, preventing all but two adjacent variables
    /// in a set from being non-zero at the same time.
    /// Weights determine the adjacency of the variables.
    ///  For more information about SOS weights, see: <http://lpsolve.sourceforge.net/5.5/SOS.htm>
    pub fn add_sos2<I: IntoIterator<Item = (Col, f64)>>(&mut self, columns_and_weights: I) {
        self.sos2
            .add_constraint_with_weights(columns_and_weights.into_iter())
    }

    /// Sets the objective sense.
    pub fn set_obj_sense(&mut self, sense: Sense) {
        self.sense = sense;
    }
    /// Construct a `raw::Model` corresponding to the current state.
    pub fn to_raw(&self) -> raw::Model {
        let mut start = Vec::with_capacity(self.num_cols as usize + 1);
        let mut index = Vec::with_capacity(self.num_cols.max(self.num_rows) as usize);
        let mut value = Vec::with_capacity(self.num_cols.max(self.num_rows) as usize);
        start.push(0);
        for col_weights in &self.weights {
            for (r, w) in col_weights {
                index.push(r.0 as c_int);
                value.push(*w);
            }
            start.push(index.len() as c_int);
        }
        let mut raw = raw::Model::new();
        raw.load_problem(
            self.num_cols as usize,
            self.num_rows as usize,
            &start,
            &index,
            &value,
            Some(&self.col_lower),
            Some(&self.col_upper),
            Some(&self.obj_coefficients),
            Some(&self.row_lower),
            Some(&self.row_upper),
        );
        for (col, &is_int) in self.is_integer.iter().enumerate() {
            if is_int {
                raw.set_integer(col);
            } else {
                raw.set_continuous(col);
            }
        }
        raw.set_obj_sense(self.sense);
        for (k, v) in &self.parameters {
            raw.set_parameter(k, v);
        }
        if let Some(sol) = &self.initial_solution {
            raw.set_initial_solution(sol);
        }
        self.sos1.add_to_raw(&mut raw, SOSConstraintType::Type1);
        self.sos2.add_to_raw(&mut raw, SOSConstraintType::Type2);
        raw
    }
    /// Solves the model. Returns the solution.
    pub fn solve(&self) -> Solution {
        let mut raw = self.to_raw();
        raw.solve();
        let col_solution = raw.col_solution().into();
        Solution { raw, col_solution }
    }
}

/// A solution to a MILP problem.
///
/// This is a thin wrapper over a `raw::Model` with accessors using
/// the typed identifiers.
pub struct Solution {
    raw: raw::Model,
    /// Cached column results to avoid creating a new slice on every access.
    col_solution: Box<[f64]>,
}
impl Solution {
    /// Gets a shared reference to the internal `raw::Model`.
    pub fn raw(&self) -> &raw::Model {
        &self.raw
    }
    /// Gets the internal `raw::Model`
    pub fn into_raw(self) -> raw::Model {
        self.raw
    }

    /// Gets the value of the given column in the solution.
    pub fn col(&self, col: Col) -> f64 {
        self.col_solution[col.as_usize()]
    }

    ///Returns whether the given variable is basic (equal to zero in the solution)
    pub fn is_basic(&self, col: Col) -> bool {
        self.col(col) == 0.
    }

    #[cfg(feature = "cbc-310")]
    #[cfg_attr(docsrs, doc(cfg(feature = "cbc-310")))]
    /// Primal row solution : gets the value of the linear expression in the given constraint
    pub fn row_activity(&self, row: Row) -> f64 {
        self.raw.row_activity()[row.as_usize()]
    }

    /* Disabled until getRowPrice is available in the C API
    /// Dual column solution, or "shadow price":
    /// the amount by which the optimal objective value is improved
    /// if the right-hand side of the given constraint is increased by 1.
    pub fn row_price(&self, row: Row) -> f64 {
        self.raw.row_price()[row.as_usize()]
    }
    */

    #[cfg(feature = "cbc-310")]
    #[cfg_attr(docsrs, doc(cfg(feature = "cbc-310")))]
    /// For a minimization problem, the reduced cost of a nonbasic variable
    /// (a variable that is null in the solution) is the amount by which the value of
    /// the objective will decrease if we increase the value of the variable by 1
    pub fn reduced_cost(&self, col: Col) -> f64 {
        self.raw.reduced_cost()[col.as_usize()]
    }
}

/// Returns a tuple of (major, minor, patch) version of the libcbc installed on the current system
pub fn libcbc_version() -> (u32, u32, u32) {
    let mut iter = raw::Model::version()
        .split('.')
        .map(|s| s.parse().unwrap_or_default());
    (
        iter.next().unwrap_or_default(),
        iter.next().unwrap_or_default(),
        iter.next().unwrap_or_default(),
    )
}

/// Returns an error if the installed version of libcbc is less than a given version
pub fn test_min_libcbc_version(major: u32, minor: u32) -> Result<(), String> {
    match libcbc_version() {
        actual if actual.0 == major && actual.1 >= minor => Ok(()),
        _ => Err(format!(
            "Expected at least version {}.{}, got version {}",
            major,
            minor,
            raw::Model::version()
        )),
    }
}

/// Panics if the installed version of libcbc is less than a given version
pub fn assert_min_libcbc_version(major: u32, minor: u32) {
    test_min_libcbc_version(major, minor).expect("The installed version of libcbc is too old.")
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::raw::{SecondaryStatus, Status};

    #[test]
    fn knapsack() {
        let mut m = Model::default();
        m.set_parameter("log", "0");
        let row = m.add_row();
        m.set_row_upper(row, 10.);
        let cols = vec![
            m.add_binary(),
            m.add_binary(),
            m.add_binary(),
            m.add_binary(),
            m.add_binary(),
        ];
        m.set_weight(row, cols[0], 2.);
        m.set_weight(row, cols[1], 8.);
        m.set_weight(row, cols[2], 4.);
        m.set_weight(row, cols[3], 2.);
        m.set_weight(row, cols[4], 5.);
        m.set_obj_coeff(cols[0], 5.);
        m.set_obj_coeff(cols[1], 3.);
        m.set_obj_coeff(cols[2], 2.);
        m.set_obj_coeff(cols[3], 7.);
        m.set_obj_coeff(cols[4], 4.);
        m.set_obj_sense(Sense::Maximize);

        let sol = m.solve();
        assert_eq!(raw::Status::Finished, sol.raw().status());
        assert_eq!(16., sol.raw().obj_value());
        assert_eq!(1., sol.col(cols[0]));
        assert_eq!(0., sol.col(cols[1]));
        assert_eq!(0., sol.col(cols[2]));
        assert_eq!(1., sol.col(cols[3]));
        assert_eq!(1., sol.col(cols[4]));
    }

    #[test]
    fn parallel_solves() {
        // Solve many instances of the knapsack test above, in parallel
        let knapsacks = (0..50)
            .map(|_| std::thread::spawn(knapsack))
            .collect::<Vec<_>>();
        let sos = (0..50)
            .map(|_| std::thread::spawn(with_sos))
            .collect::<Vec<_>>();
        for t in knapsacks.into_iter().chain(sos) {
            t.join().unwrap();
        }
    }

    #[test]
    fn infeasible() {
        // Formulate an infeasible problem and try to solve it
        let mut m = Model::default();
        let x = m.add_col();
        m.set_obj_coeff(x, 1.);
        m.set_col_upper(x, 9.); // x <= 9
        let constraint = m.add_row();
        m.set_weight(constraint, x, 1.);
        m.set_row_lower(constraint, 10.); // x >= 10
        m.set_obj_sense(Sense::Maximize);
        m.solve();
        // The problem is infeasible
        assert_eq!(Status::Unlaunched, m.to_raw().status());
        assert_eq!(SecondaryStatus::Unlaunched, m.to_raw().secondary_status());
        assert!(!m.to_raw().is_proven_optimal());
    }

    #[cfg(feature = "cbc-310")]
    #[test]
    fn simple() {
        // Formulate an infeasible problem and try to solve it
        let mut m = Model::default();
        let x = m.add_col();
        let y = m.add_col();

        // Maximise x + y
        m.set_obj_coeff(x, 1.);
        m.set_obj_coeff(y, 1.);
        m.set_obj_sense(Sense::Maximize);

        // c1: 2x + 3y <= 8
        let c1 = m.add_row();
        m.set_weight(c1, x, 2.);
        m.set_weight(c1, y, 3.);
        m.set_row_upper(c1, 8.);

        let solution = m.solve();

        assert_eq!(solution.col(x), 4.);
        assert_eq!(solution.col(y), 0.);

        // In the solution, 2x + 3y == 8
        assert_eq!(solution.row_activity(c1), 8.);

        // If we set y to 1, we will have x = 5/2 and objective = 3.5 instead of 4
        assert_eq!(solution.reduced_cost(x), 0.);
        assert_eq!(solution.reduced_cost(y), -0.5);

        // If 2x + 3y == 9, we will have x=9/2 and the objective value will be 4.5 instead of 4
        //assert_eq!(solution.row_price(c1), 0.5);
    }

    #[test]
    fn with_sos() {
        let mut m = Model::default();
        let row = m.add_row();
        m.set_row_upper(row, 10.);
        let cols = vec![m.add_binary(), m.add_binary()];
        // Maximise 5 x + 3 y
        m.set_obj_coeff(cols[0], 5.);
        m.set_obj_coeff(cols[1], 3.);
        m.set_obj_sense(Sense::Maximize);
        // Add a constraint that either x or y must be null
        m.add_sos1(vec![(cols[0], 1.), (cols[1], 2.)]);
        let sol = m.solve();
        assert_eq!(raw::Status::Finished, sol.raw().status());
        // The solution is 5 x + 3 y = 5 with x = 1 and y = 0
        assert_eq!(5., sol.raw().obj_value());
        assert_eq!(1., sol.col(cols[0]));
        assert_eq!(0., sol.col(cols[1]));
    }
}