1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
 * Copyright (c) 2020 Erik Nordstrøm <erik@nordstroem.no>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

use std::collections::HashMap;

solution_printer!(6, print_solution, input_generator, INPUT, solve_part_1, solve_part_2);

pub const INPUT: &str = include_str!("../input/2019/day6.txt");

/// ### Day 6: Universal Orbit Map
///
/// [https://adventofcode.com/2019/day/6](https://adventofcode.com/2019/day/6)
///
/// You've landed at the Universal Orbit Map facility on Mercury.  Because
/// navigation in space often involves transferring between orbits, the orbit
/// maps here are useful for finding efficient routes between, for example, you
/// and Santa. You download a map of the local orbits (your puzzle input).
///
/// Except for the universal Center of Mass (`COM`), every object in space is in
/// orbit around exactly one other object.  An [orbit](https://en.wikipedia.org/wiki/Orbit) looks roughly like this:
///
/// ```text
///                   \
///                    \
///                     |
///                     |
/// AAA--> o            o <--BBB
///                     |
///                     |
///                    /
///                   /
/// ```
///
/// In this diagram, the object `BBB` is in orbit around `AAA`. The path that `BBB`
/// takes around `AAA` (drawn with lines) is only partly shown. In the map data,
/// this orbital relationship is written `AAA)BBB`, which means "`BBB` is in orbit
/// around `AAA`".
///
/// Before you use your map data to plot a course, you need to make sure it
/// wasn't corrupted during the download.  To verify maps, the Universal Orbit
/// Map facility uses *orbit count checksums* - the total number of *direct orbits*
/// (like the one shown above) and *indirect orbits*.
///
/// Whenever `A` orbits `B` and `B` orbits `C`, then `A` *indirectly orbits* `C`.  This chain
/// can be any number of objects long: if `A` orbits `B`, `B` orbits `C`, and `C` orbits
/// `D`, then `A` indirectly orbits `D`.
///
/// For example, suppose you have the following map:
///
/// ```text
/// COM)B
/// B)C
/// C)D
/// D)E
/// E)F
/// B)G
/// G)H
/// D)I
/// E)J
/// J)K
/// K)L
/// ```
///
/// Visually, the above map of orbits looks like this:
///
/// ```text
///         G - H       J - K - L
///        /           /
/// COM - B - C - D - E - F
///                \
///                 I
/// ```
///
/// In this visual representation, when two objects are connected by a line,
/// the one on the right directly orbits the one on the left.
///
/// Here, we can count the total number of orbits as follows:
///
///   - `D` directly orbits `C` and indirectly orbits `B` and `COM`, a total of `3`
///     orbits.
///   - `L` directly orbits `K` and indirectly orbits `J`, `E`, `D`, `C`, `B`, and `COM`, a
///     total of `7` orbits.
///   - `COM` orbits nothing.
///
/// The total number of direct and indirect orbits in this example is `42`.
///
/// *What is the total number of direct and indirect orbits* in your map data?
///
/// ### Examples
///
/// ```
/// use codetrotter_aoc_2019_solutions::day_06::{input_generator, solve_part_1};
///
/// const EXINPUT: &str =
///   "COM)B\n\
///    B)C\n\
///    C)D\n\
///    D)E\n\
///    E)F\n\
///    B)G\n\
///    G)H\n\
///    D)I\n\
///    E)J\n\
///    J)K\n\
///    K)L";
///
/// assert_eq!(solve_part_1(&mut input_generator(EXINPUT)), 42);
/// ```
///
/// ### Solution
///
/// ⚠️ SPOILER ALERT ⚠️
///
/// ```
/// use codetrotter_aoc_2019_solutions::day_06::{INPUT, input_generator, solve_part_1};
/// assert_eq!(solve_part_1(&mut input_generator(INPUT)), 333679);
/// ```
pub fn solve_part_1<'a, T> (input_orbit_pairs: &mut T) -> u32
  where T: Iterator<Item = OrbitPair<'a>>
{
  let orbits = orbits_from_orbit_pairs(input_orbit_pairs);
  get_total_number_of_orbits_direct_and_indirect(&orbits, "COM", 0)
}

fn get_total_number_of_orbits_direct_and_indirect (orbits: &Orbits, body: &str, num_others_orbited_by_body: u32) -> u32
{
  match orbits.get(body)
  {
    None => num_others_orbited_by_body,
    Some(orbiters) =>
    {
      num_others_orbited_by_body + orbiters.iter().map(|&orbiter|
        get_total_number_of_orbits_direct_and_indirect(orbits, orbiter, num_others_orbited_by_body + 1)).sum::<u32>()
    },
  }
}

pub type OrbitPair<'a> = (&'a str, &'a str);
pub type Orbits<'a> = HashMap<&'a str, Vec<&'a str>>;
pub type Orbiting<'a> = HashMap<&'a str, &'a str>;

pub fn orbits_from_orbit_pairs<'a, T> (orbit_pairs: &mut T) -> Orbits<'a>
  where T: Iterator<Item = OrbitPair<'a>>
{
  let mut orbits = Orbits::new();
  for (orbited, orbiter) in orbit_pairs
  {
    let orbiters = orbits.entry(orbited).or_insert(Default::default());
    orbiters.push(orbiter);
  }
  orbits
}

pub fn input_generator (input: &'static str) -> impl Iterator<Item = OrbitPair>
{
  input.lines().map(|orbit_pair_str|
  {
    let (orbited, remain) = orbit_pair_str.split_at(orbit_pair_str.find(")").unwrap());
    let orbiter = &remain[1..];
    (orbited, orbiter)
  })
}

/// ### Day 6, Part Two
///
/// [https://adventofcode.com/2019/day/6#part2](https://adventofcode.com/2019/day/6#part2)
///
/// Now, you just need to figure out how many *orbital transfers* you (`YOU`) need
/// to take to get to Santa (`SAN`).
///
/// You start at the object `YOU` are orbiting; your destination is the object
/// `SAN` is orbiting. An orbital transfer lets you move from any object to an
/// object orbiting or orbited by that object.
///
/// For example, suppose you have the following map:
///
/// ```text
/// COM)B
/// B)C
/// C)D
/// D)E
/// E)F
/// B)G
/// G)H
/// D)I
/// E)J
/// J)K
/// K)L
/// K)YOU
/// I)SAN
/// ```
///
/// Visually, the above map of orbits looks like this:
///
/// ```text
///                           YOU
///                          /
///         G - H       J - K - L
///        /           /
/// COM - B - C - D - E - F
///                \
///                 I - SAN
/// ```
///
/// In this example, `YOU` are in orbit around `K`, and `SAN` is in orbit around `I`.
/// To move from `K` to `I`, a minimum of `4` orbital transfers are required:
///
///   - `K` to `J`
///   - `J` to `E`
///   - `E` to `D`
///   - `D` to `I`
///
/// Afterward, the map of orbits looks like this:
///
/// ```text
///         G - H       J - K - L
///        /           /
/// COM - B - C - D - E - F
///                \
///                 I - SAN
///                  \
///                   YOU
/// ```
///
/// *What is the minimum number of orbital transfers required* to move from the
/// object `YOU` are orbiting to the object `SAN` is orbiting? (Between the objects
/// they are orbiting - *not* between `YOU` and `SAN`.)
///
/// ### Examples
///
/// ```
/// use codetrotter_aoc_2019_solutions::day_06::{input_generator, solve_part_2};
///
/// const EXINPUT: &str =
///   "COM)B\n\
///    B)C\n\
///    C)D\n\
///    D)E\n\
///    E)F\n\
///    B)G\n\
///    G)H\n\
///    D)I\n\
///    E)J\n\
///    J)K\n\
///    K)L\n\
///    K)YOU\n\
///    I)SAN";
///
/// assert_eq!(solve_part_2(&mut input_generator(EXINPUT)), 4);
/// ```
///
/// ### Solution
///
/// ⚠️ SPOILER ALERT ⚠️
///
/// ```
/// use codetrotter_aoc_2019_solutions::day_06::{INPUT, input_generator, solve_part_2};
/// assert_eq!(solve_part_2(&mut input_generator(INPUT)), 370);
/// ```
pub fn solve_part_2<'a, T> (input_orbit_pairs: &mut T) -> usize
  where T: Iterator<Item = OrbitPair<'a>>
{
  let orbiting = orbiting_from_orbit_pairs(input_orbit_pairs);

  let mut you_orbit = *orbiting.get("YOU").unwrap();
  let mut santa_orbits = *orbiting.get("SAN").unwrap();

  let mut you_orbits_from_com = vec![];
  while you_orbit != "COM"
  {
    you_orbits_from_com.push(you_orbit);
    you_orbit = *orbiting.get(you_orbit).unwrap();
  }
  drop(you_orbit);

  let mut santa_orbits_from_com = vec![];
  while santa_orbits != "COM"
  {
    santa_orbits_from_com.push(santa_orbits);
    santa_orbits = *orbiting.get(santa_orbits).unwrap();
  }
  drop(santa_orbits);

  let mut distance_between_you_and_santa = 0;

  let mut you_orbits_from_com: &[&str] = &*you_orbits_from_com;
  if you_orbits_from_com.len() > santa_orbits_from_com.len()
  {
    let num_orbits_from_com_diff = you_orbits_from_com.len() - santa_orbits_from_com.len();
    you_orbits_from_com = &you_orbits_from_com[num_orbits_from_com_diff..];
    distance_between_you_and_santa += num_orbits_from_com_diff;
  }

  let mut santa_orbits_from_com: &[&str] = &*santa_orbits_from_com;
  if santa_orbits_from_com.len() > santa_orbits_from_com.len()
  {
    let num_orbits_from_com_diff = santa_orbits_from_com.len() - you_orbits_from_com.len();
    santa_orbits_from_com = &santa_orbits_from_com[num_orbits_from_com_diff..];
    distance_between_you_and_santa += num_orbits_from_com_diff;
  }

  if you_orbits_from_com.len() > 0
  {
    while you_orbits_from_com[0] != santa_orbits_from_com[0]
    {
      you_orbits_from_com = &you_orbits_from_com[1..];
      santa_orbits_from_com = &santa_orbits_from_com[1..];
      distance_between_you_and_santa += 2;
    }
  }

  distance_between_you_and_santa
}

pub fn orbiting_from_orbit_pairs<'a, T> (orbit_pairs: &mut T) -> Orbiting<'a>
  where T: Iterator<Item = OrbitPair<'a>>
{
  orbit_pairs.map(|(orbited, orbiter)| (orbiter, orbited)).collect()
}