1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
//! Codec 2 is an open source (LGPL 2.1) low bit rate speech codec.
//!
//! This is a zero dependencies pure rust port of the original [http://rowetel.com/codec2.html](http://rowetel.com/codec2.html)
//! Currently 3200 and 2400 bitrates encoding and decoding are implemented.
//!
//! # Basic Usage
//!
//! Create a Codec2 object e.g. `Codec2::new(Codec2Mode::MODE_3200)` then repeatedly obtain raw 8khz
//! 16-bit audio samples and call `encode` to encode blocks of `samples_per_frame()` samples into
//! `bits_per_frame()` compressed bits, in order. On the receiving end, create a Codec2 object and
//! repeatedly call `decode` to decompress each chunk of received bytes into the next samples.
//!
//! Complete example below. This example uses zerocopy to interpret the `&[i16]` slices as `&[u8]`
//! for I/O.
//!
//! Cargo.toml:
//!
//! ```toml
//! [dependencies]
//! zerocopy = "0.3.0"
//! codec2 = "0"
//! ```
//!
//! main.rs:
//!
//! ```rust
//! use codec2::*;
//! use std::env::args;
//! use std::io::prelude::*;
//! use zerocopy::AsBytes;
//!
//! fn main() -> std::io::Result<()> {
//!     if args().len() != 4 || (args().nth(1).unwrap() != "enc" && args().nth(1).unwrap() != "dec") {
//!         eprintln!("Usage: {} (enc|dec) inputfile outputfilename", args().nth(0).unwrap());
//!         eprintln!("Files should be raw 16-bit signed 8khz audio");
//!         return Ok(());
//!     }
//!     let mut fin = std::fs::File::open(args().nth(2).unwrap())?;
//!     let mut fout = std::fs::File::create(args().nth(3).unwrap())?;
//!     let mut c2 = Codec2::new(Codec2Mode::MODE_3200);
//!     let mut samps = vec![0; c2.samples_per_frame()]; //u16 I/O buffer
//!     let mut packed = vec![0; (c2.bits_per_frame() + 7) / 8]; //u8 I/O buffer for encoded bits
//!     if args().nth(1).unwrap() == "enc" {
//!         while fin.read_exact(samps.as_bytes_mut()).is_ok() {
//!             c2.encode(&mut packed, &samps[..]);
//!             fout.write_all(&packed)?;
//!         }
//!     } else {
//!         while fin.read_exact(&mut packed).is_ok() {
//!             c2.decode(&mut samps[..], &packed);
//!             fout.write_all(samps.as_bytes())?;
//!         }
//!     }
//!     Ok(())
//! }
//! ```

#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(non_upper_case_globals)]
#![warn(trivial_numeric_casts)]

#[cfg(test)]
mod tests {
    #[test]
    fn encode_test() {
        let mut c2 = crate::Codec2::new(crate::Codec2Mode::MODE_3200);
        //160 samples
        let spf = c2.samples_per_frame();
        let mut samps = vec![0; spf * 2];
        let bpf = c2.bits_per_frame();
        println!(
            "c2 is n_samp {:?} m_pitch {:?} Sn.len {:?} bpf {} spf {}",
            c2.internal.n_samp,
            c2.internal.m_pitch,
            c2.internal.Sn.len(),
            bpf,
            spf
        );
        let mut outbuf = vec![0; (bpf + 7) / 8];
        c2.encode(&mut outbuf, &samps);
        assert_eq!(&outbuf[..], &[0xC0, 0, 0x6A, 0x43, 0x9C, 0xE4, 0x21, 8][..]);
        let outbuforig = outbuf.clone();
        println!("encoded {:X?}", outbuf);
        c2.encode(&mut outbuf, &samps);
        assert_eq!(&outbuf[..], &[0x81, 0, 9, 0x43, 0x9C, 0xE4, 0x21, 8][..]);
        println!("encoded {:X?}", outbuf);
        c2.encode(&mut outbuf, &samps);
        assert_eq!(&outbuf[..], &[1, 0, 9, 0x43, 0x9C, 0xE4, 0x21, 8][..]);
        println!("encoded {:X?}", outbuf);
        c2.encode(&mut outbuf, &samps);
        assert_eq!(&outbuf[..], &[1, 0, 9, 0x43, 0x9C, 0xE4, 0x21, 8][..]);
        println!("encoded {:X?}", outbuf);

        c2.decode(&mut samps, &outbuforig);
        println!("decoded {:X?}", samps);
        for samp in &samps {
            assert!((*samp).abs() < 0x100);
        }
    }
}

mod kiss_fft;
mod nlp;
use nlp::FDMDV_OS_TAPS_16K;
mod quantise;
use crate::quantise::*;
mod codebook;
use crate::codebook::*;
mod codebookd;
use crate::codebookd::*;
mod codebookge;
use crate::codebookge::*;
const WO_BITS: i32 = 7;
const WO_E_BITS: u32 = 8;
const LSPD_SCALAR_INDEXES: usize = 10;
const LSP_SCALAR_INDEXES: usize = 10;
use std::f64::consts::PI;

const N_S: f32 = 0.01; //  internal proc frame length in secs
const TW_S: f32 = 0.005; //  trapezoidal synth window overlap
const MAX_AMP: usize = 160; //  maximum number of harmonics
const TWO_PI: f32 = 6.283185307; //  mathematical constant
const FFT_ENC: usize = 512; //  size of FFT used for encoder
const FFT_DEC: usize = 512; //  size of FFT used in decoder
const V_THRESH: f32 = 6.0; //  voicing threshold in dB
const LPC_ORD: usize = 10; //  LPC order
                           //  Pitch estimation constants
const M_PITCH_S: f32 = 0.0400; //  pitch analysis window in s
const P_MIN_S: f32 = 0.0025; //  minimum pitch period in s
const P_MAX_S: f32 = 0.0200; //  maximum pitch period in s
mod inner {
    use crate::*;
    #[derive(Clone, Debug)]
    pub struct C2const {
        pub Fs: i32,       //  sample rate of this instance
        pub n_samp: usize, //  number of samples per 10ms frame at Fs
        //        pub max_amp: i32,   //  maximum number of harmonics
        pub m_pitch: usize, //  pitch estimation window size in samples
        pub p_min: i32,     //  minimum pitch period in samples
        pub p_max: i32,     //  maximum pitch period in samples
        pub Wo_min: f32,
        pub Wo_max: f32,
        pub nw: usize, //  analysis window size in samples
        pub tw: usize, //  trapezoidal synthesis window overlap
    }
    impl C2const {
        pub fn new(Fs: i32, framelength_s: f32) -> Self {
            Self {
                Fs: Fs,
                n_samp: ((Fs as f32) * framelength_s).round() as usize,
                //                max_amp: ((Fs as f32) * P_MAX_S / 2.0).floor() as i32,
                p_min: ((Fs as f32) * P_MIN_S).floor() as i32,
                p_max: ((Fs as f32) * P_MAX_S).floor() as i32,
                m_pitch: ((Fs as f32) * M_PITCH_S).floor() as usize,
                Wo_min: TWO_PI / ((Fs as f32) * P_MAX_S).floor(),
                Wo_max: TWO_PI / ((Fs as f32) * P_MIN_S).floor(),
                nw: 279,
                tw: ((Fs as f32) * TW_S) as usize,
            }
        }

        /*---------------------------------------------------------------------------*\

          FUNCTION....: dft_speech
          AUTHOR......: David Rowe, conversion by Matt Weeks
          DATE CREATED: 27/5/94

          Finds the DFT of the current speech input speech frame.

        \*---------------------------------------------------------------------------*/
        // TODO: we can either go for a faster FFT using fftr and some stack usage
        // or we can reduce stack usage to almost zero on STM32 by switching to fft_inplace
        pub fn dft_speech(
            &self,
            fft_fwd_cfg: &codec2_fft_cfg,
            Sw: &mut [COMP],
            Sn: &[f32],
            w: &[f32],
        ) {
            let m_pitch = self.m_pitch;
            let nw = self.nw;

            for i in 0..FFT_ENC {
                Sw[i].r = 0.0;
                Sw[i].i = 0.0;
            }

            /* Centre analysis window on time axis, we need to arrange input
            to FFT this way to make FFT phases correct */

            //  move 2nd half to start of FFT input vector

            for i in 0..nw / 2 {
                Sw[i].r = Sn[i + m_pitch / 2] * w[i + m_pitch / 2];
            }

            //  move 1st half to end of FFT input vector

            for i in 0..nw / 2 {
                Sw[FFT_ENC - nw / 2 + i].r =
                    Sn[i + m_pitch / 2 - nw / 2] * w[i + m_pitch / 2 - nw / 2];
            }

            codec2_fft_inplace(fft_fwd_cfg, Sw);
        }
    }
    //  describes each codebook
    #[derive(Clone, Debug)]
    pub struct lsp_codebook {
        pub k: usize,           //  dimension of vector
        pub log2m: i32,         //  number of bits in m
        pub cb: &'static [f32], //  The elements
    }
    #[derive(Copy, Clone)]
    pub struct kiss_fft_cpx {
        pub r: kiss_fft_scalar,
        pub i: kiss_fft_scalar,
    }
    impl kiss_fft_cpx {
        pub fn new() -> Self {
            Self { r: 0.0, i: 0.0 }
        }
        pub fn kf_cexp(phase: f64) -> Self {
            Self {
                r: phase.cos() as f32,
                i: phase.sin() as f32,
            }
        }
    }
    impl std::fmt::Debug for kiss_fft_cpx {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            f.write_fmt(format_args!("{},{}", self.r, self.i))
        }
    }
    pub type COMP = kiss_fft_cpx;
    #[derive(Clone, Debug)]
    pub struct kiss_fft_state {
        pub nfft: usize,
        pub inverse: i32,
        pub factors: [usize; 2 * MAXFACTORS],
        pub twiddles: Vec<kiss_fft_cpx>,
    }
    impl kiss_fft_state {
        pub fn new(nfft: usize, inverse_fft: i32) -> Self {
            let mut twiddles = Vec::with_capacity(nfft);
            let mut factors = [0; 2 * MAXFACTORS];
            for i in 0..nfft {
                let mut phase = -2.0 * PI * (i as f64) / (nfft as f64);
                if inverse_fft != 0 {
                    phase *= -1.0;
                }
                twiddles.push(kiss_fft_cpx::kf_cexp(phase));
            }
            let mut n = nfft;
            let mut p = 4;
            let floor_sqrt = (n as f64).sqrt().floor() as usize;
            let mut idx = 0;
            // factor out powers of 4, powers of 2, then any remaining primes
            loop {
                while (n % p) != 0 {
                    match p {
                        4 => p = 2,
                        2 => p = 3,
                        _ => p += 2,
                    }
                    if p > floor_sqrt {
                        p = n; //  no more factors, skip to end
                    }
                }
                n /= p;
                factors[idx] = p;
                idx += 1;
                factors[idx] = n;
                idx += 1;
                if n <= 1 {
                    break;
                } //do..while (n > 1)
            }
            Self {
                nfft: nfft,
                inverse: inverse_fft,
                factors: factors,
                twiddles: twiddles,
            }
        }
    }
    #[derive(Clone, Debug)]
    pub struct kiss_fftr_state {
        pub substate: kiss_fft_cfg,
        pub tmpbuf: Vec<kiss_fft_cpx>,
        pub super_twiddles: Vec<kiss_fft_cpx>,
    }
    impl kiss_fftr_state {
        pub fn new(mut nfft: usize, inverse_fft: i32) -> Self {
            nfft = nfft / 2;
            let mut res = Self {
                substate: kiss_fft_state::new(nfft, inverse_fft),
                tmpbuf: vec![kiss_fft_cpx::new(); nfft],
                super_twiddles: vec![kiss_fft_cpx::new(); nfft / 2],
            };
            for i in 0..nfft / 2 {
                let mut phase =
                    -3.14159265358979323846264338327 * ((i as f64 + 1.0) / nfft as f64 + 0.5);
                if inverse_fft != 0 {
                    phase *= -1.0;
                }
                res.super_twiddles[i] = kiss_fft_cpx::kf_cexp(phase);
            }
            res
        }
    }
    #[derive(Clone, Debug)]
    pub struct NLP {
        pub Fs: i32, //  sample rate in Hz
        pub m: usize,
        pub w: [f32; PMAX_M / DEC], //  DFT window
        pub sq: [f32; PMAX_M],      //  squared speech samples
        pub mem_x: f32,
        pub mem_y: f32,               //  memory for notch filter
        pub mem_fir: [f32; NLP_NTAP], //  decimation FIR filter memory
        pub fft_cfg: codec2_fft_cfg,  //  kiss FFT config
        pub Sn16k: Vec<f32>,          //  Fs=16kHz input speech vector
                                      //    FILE         *f,
    }
    impl NLP {
        pub fn new(c2const: &C2const) -> Self {
            let (m, vsize) = if c2const.Fs == 16000 {
                (
                    c2const.m_pitch / 2,
                    FDMDV_OS_TAPS_16K as usize + c2const.n_samp,
                )
            } else {
                (c2const.m_pitch, 0)
            };
            let mut w = [0.0; PMAX_M / DEC];
            for i in 0..m / DEC {
                w[i] =
                    0.5 - 0.5 * (2.0 * PI as f32 * i as f32 / (m as f32 / DEC as f32 - 1.0)).cos();
            }
            Self {
                Fs: c2const.Fs, //  sample rate in Hz
                m: m,
                w: w,              //  DFT window
                sq: [0.0; PMAX_M], //  squared speech samples
                mem_x: 0.0,
                mem_y: 0.0,                                   //  memory for notch filter
                mem_fir: [0.0; NLP_NTAP],                     //  decimation FIR filter memory
                fft_cfg: kiss_fft_state::new(PE_FFT_SIZE, 0), //  kiss FFT config
                Sn16k: vec![0.0; vsize],                      //  Fs=16kHz input speech vector
            }
        }
    }
    #[derive(Clone, Debug, Copy)]
    pub struct MODEL {
        pub Wo: f32,                 //  fundamental frequency estimate in radians
        pub L: usize,                //  number of harmonics
        pub A: [f32; MAX_AMP + 1],   //  amplitiude of each harmonic
        pub phi: [f32; MAX_AMP + 1], //  phase of each harmonic
        pub voiced: i32,             //  non-zero if this frame is voiced
    }
    impl MODEL {
        pub fn new(p_max: f32) -> Self {
            let wo = TWO_PI / p_max;
            Self {
                Wo: wo,                               //  fundamental frequency estimate in radians
                L: (PI / wo as f64).floor() as usize, //  number of harmonics
                A: [0.0; MAX_AMP + 1],                //  amplitiude of each harmonic
                phi: [0.0; MAX_AMP + 1],              //  phase of each harmonic
                voiced: 0,                            //  non-zero if this frame is voiced
            }
        }
    }
}
use inner::*;
type kiss_fft_scalar = f32;
type kiss_fft_cfg = kiss_fft_state;

/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
const PE_FFT_SIZE: usize = 512;
const MAXFACTORS: usize = 32;

type codec2_fft_cfg = kiss_fft_state;
type codec2_fftr_cfg = kiss_fftr_state;
type kiss_fftr_cfg = kiss_fftr_state;
fn codec2_fft(cfg: &kiss_fft_cfg, fin: &[kiss_fft_cpx], fout: &mut [kiss_fft_cpx]) {
    kiss_fft::kiss_fft(cfg, fin, fout);
}
fn codec2_fftr(cfg: &mut codec2_fftr_cfg, inp: &[f32], out: &mut [kiss_fft_cpx]) {
    kiss_fft::kiss_fftr(cfg, inp, out);
}
fn codec2_fftri(cfg: &mut codec2_fftr_cfg, inp: &[kiss_fft_cpx], out: &mut [f32]) {
    kiss_fft::kiss_fftri(cfg, inp, out);
}

fn codec2_fft_inplace(cfg: &codec2_fft_cfg, inout: &mut [kiss_fft_cpx]) {
    let mut in_ = [kiss_fft_cpx::new(); 512];
    // decide whether to use the local stack based buffer for in
    // or to allow kiss_fft to allocate RAM
    // second part is just to play safe since first method
    // is much faster and uses less RAM
    if cfg.nfft <= 512 {
        in_[..cfg.nfft].copy_from_slice(&inout[..cfg.nfft]);
        kiss_fft::kiss_fft(cfg, &in_, inout);
    } else {
        kiss_fft::kiss_fft(cfg, &inout.to_vec(), inout);
    }
}

const PMAX_M: usize = 320;
const DEC: usize = 5;
const NLP_NTAP: usize = 48;
const BPF_N: usize = 101;
const LPCPF_BETA: f32 = 0.2;
const LPCPF_GAMMA: f32 = 0.5;

#[derive(Clone, Debug)]
struct Codec2Internal {
    mode: Codec2Mode,
    c2const: C2const,
    Fs: i32,
    n_samp: usize,
    m_pitch: usize,
    fft_fwd_cfg: codec2_fft_cfg,   //  forward FFT config
    fftr_fwd_cfg: codec2_fftr_cfg, //  forward real FFT config
    w: Vec<f32>,                   //  [m_pitch] time domain hamming window
    W: [f32; FFT_ENC],             //  DFT of w[]
    Pn: Vec<f32>,                  //  [2*n_samp] trapezoidal synthesis window
    bpf_buf: Vec<f32>,             //  buffer for band pass filter
    Sn: Vec<f32>,                  //  [m_pitch] input speech
    hpf_states: [f32; 2],          //  high pass filter states
    nlp: NLP,                      //  pitch predictor states
    gray: i32,                     //  non-zero for gray encoding

    fftr_inv_cfg: codec2_fftr_cfg, //  inverse FFT config
    Sn_: Vec<f32>,                 //  [2*n_samp] synthesised output speech
    ex_phase: f32,                 //  excitation model phase track
    bg_est: f32,                   //  background noise estimate for post filter
    prev_f0_enc: f32,              //  previous frame's f0    estimate
    prev_model_dec: MODEL,         //  previous frame's model parameters
    prev_lsps_dec: [f32; LPC_ORD], //  previous frame's LSPs
    prev_e_dec: f32,               //  previous frame's LPC energy

    lpc_pf: i32,     //  LPC post filter on
    bass_boost: i32, //  LPC post filter bass boost
    beta: f32,       //  LPC post filter parameters
    gamma: f32,

    xq_enc: [f32; 2], //  joint pitch and energy VQ states
    xq_dec: [f32; 2],

    smoothing: i32, //  enable smoothing for channels with errors
    se: f32,        //  running sum of squared error
    nse: u32,       //  number of terms in sum
    post_filter_en: i32,
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: make_synthesis_window
  AUTHOR......: David Rowe, conversion by Matt Weeks
  DATE CREATED: 11/5/94

  Init function that generates the trapezoidal (Parzen) sythesis window.

\*---------------------------------------------------------------------------*/
fn make_synthesis_window(c2const: &C2const, Pn: &mut [f32]) {
    let n_samp = c2const.n_samp;
    let tw = c2const.tw;

    //  Generate Parzen window in time domain
    for i in 0..n_samp / 2 - tw {
        Pn[i] = 0.0;
    }
    let mut win = 0.0;
    for i in n_samp / 2 - tw..n_samp / 2 + tw {
        Pn[i] = win;
        win += 1.0 / (2.0 * tw as f32);
    }
    for i in n_samp / 2 + tw..3 * n_samp / 2 - tw {
        Pn[i] = 1.0;
    }
    win = 1.0;
    for i in 3 * n_samp / 2 - tw..3 * n_samp / 2 + tw {
        Pn[i] = win;
        win -= 1.0 / (2.0 * tw as f32);
    }
    for i in 3 * n_samp / 2 + tw..2 * n_samp {
        Pn[i] = 0.0;
    }
}

fn make_analysis_window(
    c2const: &C2const,
    fft_fwd_cfg: &codec2_fft_cfg,
    w: &mut [f32],
    W: &mut [f32],
) {
    let mut wshift = [kiss_fft_cpx::new(); FFT_ENC];
    let m_pitch = c2const.m_pitch;
    let nw = c2const.nw;

    /*
       Generate Hamming window centered on M-sample pitch analysis window

    0            M/2           M-1
    |-------------|-------------|
          |-------|-------|
              nw samples

       All our analysis/synthsis is centred on the M/2 sample.
    */

    let mut m = 0.0;
    for i in 0..m_pitch / 2 - nw / 2 {
        w[i] = 0.0;
    }
    let mut j = 0;
    for i in m_pitch / 2 - nw / 2..m_pitch / 2 + nw / 2 {
        w[i] = 0.5 - 0.5 * (TWO_PI * (j as f32) / ((nw as f32) - 1.0)).cos();
        m += w[i] * w[i];
        j += 1;
    }
    for i in m_pitch / 2 + nw / 2..m_pitch {
        w[i] = 0.0;
    }

    /* Normalise - makes freq domain amplitude estimation straight
    forward */

    m = 1.0 / (m * FFT_ENC as f32).sqrt();
    for i in 0..m_pitch {
        w[i] *= m;
    }

    /*
       Generate DFT of analysis window, used for later processing.  Note
       we modulo FFT_ENC shift the time domain window w[], this makes the
       imaginary part of the DFT W[] equal to zero as the shifted w[] is
       even about the n=0 time axis if nw is odd.  Having the imag part
       of the DFT W[] makes computation easier.

       0                      FFT_ENC-1
       |-------------------------|

        ----\               /----
             \             /
              \           /          <- shifted version of window w[n]
               \         /
                \       /
                 -------

       |---------|     |---------|
         nw/2              nw/2
    */

    let mut temp = [kiss_fft_cpx::new(); FFT_ENC];

    for i in 0..FFT_ENC {
        wshift[i].r = 0.0;
        wshift[i].i = 0.0;
    }
    for i in 0..(nw / 2) {
        wshift[i].r = w[i + (m_pitch) / 2];
    }
    let mut j = m_pitch / 2 - nw / 2;
    for i in FFT_ENC - nw / 2..FFT_ENC {
        wshift[i].r = w[j];
        j += 1;
    }

    codec2_fft(fft_fwd_cfg, &wshift[..], &mut temp);

    /*
        Re-arrange W[] to be symmetrical about FFT_ENC/2.  Makes later
        analysis convenient.

     Before:


       0                 FFT_ENC-1
       |----------|---------|
       __                   _
         \                 /
          \_______________/

     After:

       0                 FFT_ENC-1
       |----------|---------|
                 ___
                /   \
       ________/     \_______

    */

    for i in 0..FFT_ENC / 2 {
        W[i] = temp[i + FFT_ENC / 2].r;
        W[i + FFT_ENC / 2] = temp[i].r;
    }
}

const WordSize: usize = 8;
const IndexMask: usize = 0x7;
const ShiftRight: usize = 3;
fn pack(
    bitArray: &mut [u8],  //  The output bit string.
    bitIndex: &mut usize, //  Index into the string in BITS, not bytes.
    field: i32,           //  The bit field to be packed.
    fieldWidth: u32,      //  Width of the field in BITS, not bytes.
) {
    pack_natural_or_gray(bitArray, bitIndex, field, fieldWidth, 1);
}

/** Pack a bit field into a bit string, encoding the field in Gray code.
 *
 * The output is an array of unsigned char data. The fields are efficiently
 * packed into the bit string. The Gray coding is a naive attempt to reduce
 * the effect of single-bit errors, we expect to do a better job as the
 * codec develops.
 *
 * This code would be simpler if it just set one bit at a time in the string,
 * but would hit the same cache line more often. I'm not sure the complexity
 * gains us anything here.
 *
 * Although field is currently of int type rather than unsigned for
 * compatibility with the rest of the code, indices are always expected to
 * be >= 0.
 */
fn pack_natural_or_gray(
    bitArray: &mut [u8],  //  The output bit string.
    bitIndex: &mut usize, //  Index into the string in BITS, not bytes.
    mut field: i32,       //  The bit field to be packed.
    mut fieldWidth: u32,  //  Width of the field in BITS, not bytes.
    gray: u32,            //  non-zero for gray coding
) {
    if gray > 0 {
        //  Convert the field to Gray code
        field = (field >> 1) ^ field;
    }

    while fieldWidth != 0 {
        let bI = *bitIndex;
        let bitsLeft = (WordSize - (bI & IndexMask)) as u32;
        let sliceWidth = if bitsLeft < fieldWidth {
            bitsLeft
        } else {
            fieldWidth
        };
        let wordIndex = bI >> ShiftRight;

        bitArray[wordIndex] |=
            (((field >> (fieldWidth - sliceWidth)) << (bitsLeft - sliceWidth)) & 0xFF) as u8;

        *bitIndex = bI + sliceWidth as usize;
        fieldWidth -= sliceWidth;
    }
}

/** Unpack a field from a bit string, converting from Gray code to binary.
 *
 */
fn unpack(
    bitArray: &[u8],    //  The input bit string.
    bitIndex: &mut u32, //  Index into the string in BITS, not bytes.
    fieldWidth: u32,    //  Width of the field in BITS, not bytes.
) -> i32 {
    unpack_natural_or_gray(bitArray, bitIndex, fieldWidth, 1)
}

/** Unpack a field from a bit string, to binary, optionally using
 * natural or Gray code.
 *
 */
fn unpack_natural_or_gray(
    bitArray: &[u8],     //  The input bit string.
    bitIndex: &mut u32,  //  Index into the string in BITS, not bytes.
    mut fieldWidth: u32, //  Width of the field in BITS, not bytes.
    gray: u32,           //  non-zero for Gray coding
) -> i32 {
    let mut field = 0;
    while fieldWidth != 0 {
        let bI = *bitIndex;
        let bitsLeft = WordSize as u32 - (bI & IndexMask as u32);
        let sliceWidth = if bitsLeft < fieldWidth {
            bitsLeft
        } else {
            fieldWidth
        };

        field |= ((bitArray[(bI >> ShiftRight) as usize] as usize >> (bitsLeft - sliceWidth))
            & ((1 << sliceWidth) - 1))
            << (fieldWidth - sliceWidth);

        *bitIndex = bI + sliceWidth;
        fieldWidth -= sliceWidth;
    }

    if gray != 0 {
        //  Convert from Gray code to binary. Works for maximum 8-bit fields.
        let mut t = field ^ (field >> 8);
        t ^= t >> 4;
        t ^= t >> 2;
        t ^= t >> 1;
        t as i32
    } else {
        field as i32
    }
}

/// Codec mode (bitrate). Currently only MODE_3200 and MODE_2400 are implemented
#[derive(Clone, Debug, Copy)]
pub enum Codec2Mode {
    MODE_3200,
    MODE_2400,
    //MODE_1600,
    //MODE_1400,
    //MODE_1300,
    //MODE_1200,
    //MODE_700C,
    //MODE_450,
    //MODE_450PWB,
}
use Codec2Mode::*;

/// A Codec2 object for encoding or decoding audio
#[derive(Clone, Debug)]
pub struct Codec2 {
    internal: Codec2Internal,
}

impl Codec2 {
    /// Creates a new Codec2 object suitable for encoding or decoding audio
    pub fn new(mode: Codec2Mode) -> Self {
        let c2const = C2const::new(8000, N_S);
        let n_samp = c2const.n_samp;
        let m_pitch = c2const.m_pitch;
        let mut c2 = Self {
            internal: Codec2Internal {
                mode: mode,
                Fs: c2const.Fs,
                n_samp: n_samp,
                m_pitch: m_pitch,
                fft_fwd_cfg: kiss_fft_state::new(FFT_ENC, 0), //  forward FFT config
                fftr_fwd_cfg: kiss_fftr_state::new(FFT_ENC, 0), //  forward real FFT config
                w: vec![0.0; m_pitch], //  [m_pitch] time domain hamming window
                W: [0.0; FFT_ENC],     //  DFT of w[]
                Pn: vec![0.0; 2 * n_samp], //  [2*n_samp] trapezoidal synthesis window
                bpf_buf: vec![0.0; BPF_N + 4 * n_samp], //  buffer for band pass filter
                Sn: vec![1.0; m_pitch], //  [m_pitch] input speech
                hpf_states: [0.0; 2],  //  high pass filter states

                nlp: NLP::new(&c2const), //  pitch predictor states
                gray: 1,                 //  non-zero for gray encoding

                fftr_inv_cfg: kiss_fftr_state::new(FFT_DEC, 1), //  inverse FFT config
                Sn_: vec![0.0; m_pitch], //  [2*n_samp] synthesised output speech
                prev_f0_enc: 1.0 / P_MAX_S,
                bg_est: 0.0,
                ex_phase: 0.0,
                prev_model_dec: MODEL::new(c2const.p_max as f32),
                c2const: c2const,
                prev_lsps_dec: [0.0; LPC_ORD],
                prev_e_dec: 1.0,
                lpc_pf: 1,        //  LPC post filter on
                bass_boost: 1,    //  LPC post filter bass boost
                beta: LPCPF_BETA, //  LPC post filter parameters
                gamma: LPCPF_GAMMA,
                xq_enc: [0.0; 2], //  joint pitch and energy VQ states
                xq_dec: [0.0; 2],

                smoothing: 0, //  enable smoothing for channels with errors
                se: 0.0,
                nse: 0,
                post_filter_en: 1,
            },
        };
        for i in 0..LPC_ORD {
            c2.internal.prev_lsps_dec[i] = (i as f64 * PI / (LPC_ORD as f64 + 1.0)) as f32;
        }
        make_analysis_window(
            &c2.internal.c2const,
            &c2.internal.fft_fwd_cfg,
            &mut c2.internal.w,
            &mut c2.internal.W,
        );
        make_synthesis_window(&c2.internal.c2const, &mut c2.internal.Pn);
        c2
    }

    /// The number of bits in an encoded (compressed) frame; 64 for the 3200 bitrate, 48 for 2400.
    pub fn bits_per_frame(&self) -> usize {
        if let MODE_3200 = self.internal.mode {
            64
        } else {
            48
        }
    }

    /// How many samples an encoded (compressed) frame represents; generally 160 (20ms of speech).
    pub fn samples_per_frame(&self) -> usize {
        160
    }

    /// Encodes speech samples at current bitrate into `bits_per_frame()`/8 rounded up output bytes.
    /// For MODE_3200, this is 64 bits or 8 bytes, for MODE_2400, it's 48 bits (6 bytes).
    pub fn encode(&mut self, bits: &mut [u8], speech: &[i16]) {
        if let MODE_3200 = self.internal.mode {
            self.codec2_encode_3200(bits, speech)
        } else {
            self.codec2_encode_2400(bits, speech)
        }
    }

    /// Decodes `bits_per_frame()` compressed bits into `samples_per_frame()` speech samples.
    /// For MODE_3200, the input is 64 bits or 8 bytes, for MODE_2400, it's 48 bits (6 bytes).
    pub fn decode(&mut self, speech: &mut [i16], bits: &[u8]) {
        if let MODE_3200 = self.internal.mode {
            self.codec2_decode_3200(speech, bits)
        } else {
            self.codec2_decode_2400(speech, bits)
        }
    }

    /*---------------------------------------------------------------------------*\

      FUNCTION....: codec2_encode_3200
      AUTHOR......: David Rowe, conversion by Matt Weeks
      DATE CREATED: 13 Sep 2012

      Encodes 160 speech samples (20ms of speech) into 64 bits.

      The codec2 algorithm actually operates internally on 10ms (80
      sample) frames, so we run the encoding algorithm twice.  On the
      first frame we just send the voicing bits.  On the second frame we
      send all model parameters.  Compared to 2400 we use a larger number
      of bits for the LSPs and non-VQ pitch and energy.

      The bit allocation is:

        Parameter                      bits/frame
        --------------------------------------
        Harmonic magnitudes (LSPs)     50
        Pitch (Wo)                      7
        Energy                          5
        Voicing (10ms update)           2
        TOTAL                          64

    \*---------------------------------------------------------------------------*/
    /// Encodes 160 speech samples (20ms of speech) into 64 bits.
    fn codec2_encode_3200(&mut self, bits: &mut [u8], speech: &[i16]) {
        let mut model = MODEL::new(self.internal.c2const.p_max as f32);
        let mut ak = [0.0; LPC_ORD + 1]; //f32
        let mut lsps = [0.0; LPC_ORD]; //f32
        let mut lspd_indexes = [0; LPC_ORD];
        let mut nbit = 0;

        let nbyte = (self.bits_per_frame() + 7) / 8;
        for i in 0..nbyte {
            bits[i] = 0;
        }

        //  first 10ms analysis frame - we just want voicing
        self.analyse_one_frame(&mut model, speech);
        pack(bits, &mut nbit, model.voiced, 1);

        //  second 10ms analysis frame
        self.analyse_one_frame(&mut model, &speech[self.internal.n_samp..]);
        pack(bits, &mut nbit, model.voiced, 1);
        let Wo_index = encode_Wo(&self.internal.c2const, model.Wo, WO_BITS);
        pack(bits, &mut nbit, Wo_index, WO_BITS as u32); //1+1+7 = 9 bits

        let e = speech_to_uq_lsps(
            &mut lsps,
            &mut ak,
            &self.internal.Sn,
            &self.internal.w,
            self.internal.m_pitch,
            LPC_ORD,
        );
        let e_index = encode_energy(e, E_BITS);
        pack(bits, &mut nbit, e_index, E_BITS as u32); //9+5 = 14 bits

        encode_lspds_scalar(&mut lspd_indexes, &lsps, LPC_ORD);
        for i in 0..LSPD_SCALAR_INDEXES {
            pack(bits, &mut nbit, lspd_indexes[i], lspd_bits(i) as u32);
        }
    }

    /*---------------------------------------------------------------------------*\

      FUNCTION....: codec2_decode_3200
      AUTHOR......: David Rowe, conversion by Matt Weeks
      DATE CREATED: 13 Sep 2012

      Decodes a frame of 64 bits into 160 samples (20ms) of speech.

    \*---------------------------------------------------------------------------*/
    /// Decodes a frame of 64 bits into 160 samples (20ms) of speech.
    fn codec2_decode_3200(&mut self, speech: &mut [i16], bits: &[u8]) {
        let mut ak = [[0.0; LPC_ORD + 1]; 2];
        let mut nbit = 0;
        let mut Aw = [COMP::new(); FFT_ENC];

        let mut model = [MODEL::new(self.internal.c2const.p_max as f32); 2];

        //  unpack bits from channel ------------------------------------

        /* this will partially fill the model params for the 2 x 10ms
        frames */

        model[0].voiced = unpack(bits, &mut nbit, 1);
        model[1].voiced = unpack(bits, &mut nbit, 1);

        let Wo_index = unpack(bits, &mut nbit, WO_BITS as u32);
        model[1].Wo = decode_Wo(&self.internal.c2const, Wo_index, WO_BITS);
        model[1].L = (PI / model[1].Wo as f64) as usize;

        let mut e = [0.0; 2];
        let e_index = unpack(bits, &mut nbit, E_BITS as u32);
        e[1] = decode_energy(e_index, E_BITS);

        let mut lspd_indexes = [0; LPC_ORD];
        for i in 0..LSPD_SCALAR_INDEXES {
            lspd_indexes[i] = unpack(bits, &mut nbit, lspd_bits(i) as u32) as usize;
        }
        let mut lsps = [[0.0; LPC_ORD]; 2];
        decode_lspds_scalar(&mut lsps[1][0..], &lspd_indexes, LPC_ORD);

        //  interpolate ------------------------------------------------

        /* Wo and energy are sampled every 20ms, so we interpolate just 1
        10ms frame between 20ms samples */

        let (model0, model1) = model.split_at_mut(1);
        interp_Wo(
            &mut model0[0],
            &self.internal.prev_model_dec,
            &model1[0],
            self.internal.c2const.Wo_min,
        );
        e[0] = interp_energy(self.internal.prev_e_dec, e[1]);

        /* LSPs are sampled every 20ms so we interpolate the frame in
        between, then recover spectral amplitudes */

        let (lsps0, lsps1) = lsps.split_at_mut(1);
        interpolate_lsp_ver2(
            &mut lsps0[0][0..],
            &self.internal.prev_lsps_dec,
            &mut lsps1[0][0..],
            0.5,
            LPC_ORD,
        );

        for i in 0..2 {
            lsp_to_lpc(&lsps[i][0..], &mut ak[i][0..], LPC_ORD);
            let mut snr = 0.0;
            aks_to_M2(
                &mut self.internal.fftr_fwd_cfg,
                &ak[i][..],
                LPC_ORD,
                &mut model[i],
                e[i],
                &mut snr,
                0,
                0,
                self.internal.lpc_pf,
                self.internal.bass_boost,
                self.internal.beta,
                self.internal.gamma,
                &mut Aw,
            );
            apply_lpc_correction(&mut model[i]);
            self.synthesise_one_frame(
                &mut speech[self.internal.n_samp * i..],
                &mut model[i],
                &mut Aw,
                1.0,
            );
        }

        //  update memories for next frame ----------------------------

        self.internal.prev_model_dec = model[1];
        self.internal.prev_e_dec = e[1];
        for i in 0..LPC_ORD {
            self.internal.prev_lsps_dec[i] = lsps[1][i];
        }
    }

    /*---------------------------------------------------------------------------*\

      FUNCTION....: codec2_encode_2400
      AUTHOR......: David Rowe
      DATE CREATED: 21/8/2010

      Encodes 160 speech samples (20ms of speech) into 48 bits.

      The codec2 algorithm actually operates internally on 10ms (80
      sample) frames, so we run the encoding algorithm twice.  On the
      first frame we just send the voicing bit.  On the second frame we
      send all model parameters.

      The bit allocation is:

        Parameter                      bits/frame
        --------------------------------------
        Harmonic magnitudes (LSPs)     36
        Joint VQ of Energy and Wo       8
        Voicing (10ms update)           2
        Spare                           2
        TOTAL                          48

    \*---------------------------------------------------------------------------*/
    /// Encodes 160 speech samples (20ms of speech) into 48 bits.
    fn codec2_encode_2400(&mut self, bits: &mut [u8], speech: &[i16]) {
        let mut model = MODEL::new(self.internal.c2const.p_max as f32);
        let mut ak = [0.0; LPC_ORD + 1]; //f32
        let mut lsps = [0.0; LPC_ORD]; //f32
        let mut lsp_indexes = [0; LPC_ORD];
        let mut nbit = 0;

        for i in 0..(self.bits_per_frame() + 7) / 8 {
            bits[i] = 0;
        }

        //  first 10ms analysis frame - we just want voicing
        self.analyse_one_frame(&mut model, speech);
        pack(bits, &mut nbit, model.voiced, 1);

        //  second 10ms analysis frame
        self.analyse_one_frame(&mut model, &speech[self.internal.n_samp..]);
        pack(bits, &mut nbit, model.voiced, 1);
        let e = speech_to_uq_lsps(
            &mut lsps,
            &mut ak,
            &self.internal.Sn,
            &self.internal.w,
            self.internal.m_pitch,
            LPC_ORD,
        );

        let WoE_index = encode_WoE(&model, e, &mut self.internal.xq_enc);
        pack(bits, &mut nbit, WoE_index, WO_E_BITS);

        encode_lsps_scalar(&mut lsp_indexes, &lsps, LPC_ORD);
        for i in 0..LSP_SCALAR_INDEXES {
            pack(bits, &mut nbit, lsp_indexes[i], lsp_bits(i));
        }
        let spare = 0;
        pack(bits, &mut nbit, spare, 2);

        //assert(nbit == (unsigned)codec2_bits_per_frame(c2));
    }

    /*---------------------------------------------------------------------------*\

      FUNCTION....: codec2_decode_2400
      AUTHOR......: David Rowe
      DATE CREATED: 21/8/2010

      Decodes frames of 48 bits into 160 samples (20ms) of speech.

    \*---------------------------------------------------------------------------*/
    fn codec2_decode_2400(&mut self, speech: &mut [i16], bits: &[u8]) {
        let mut model = [MODEL::new(self.internal.c2const.p_max as f32); 2];
        let mut lsp_indexes = [0; LPC_ORD];
        let mut lsps = [[0.0; LPC_ORD]; 2];
        let mut e = [0.0; 2];
        let mut snr = 0.0;
        let mut ak = [[0.0; LPC_ORD + 1]; 2];
        let mut nbit = 0;
        let mut Aw = [COMP::new(); FFT_ENC];

        //assert(c2 != NULL);

        /* unpack bits from channel ------------------------------------*/

        /* this will partially fill the model params for the 2 x 10ms
        frames */
        model[0].voiced = unpack(bits, &mut nbit, 1);
        model[1].voiced = unpack(bits, &mut nbit, 1);

        let WoE_index = unpack(bits, &mut nbit, WO_E_BITS) as usize;
        decode_WoE(
            &self.internal.c2const,
            &mut model[1],
            &mut e[1],
            &mut self.internal.xq_dec,
            WoE_index,
        );

        for i in 0..LSP_SCALAR_INDEXES {
            lsp_indexes[i] = unpack(bits, &mut nbit, lsp_bits(i)) as usize;
        }
        decode_lsps_scalar(&mut lsps[1][0..], &lsp_indexes, LPC_ORD);
        check_lsp_order(&mut lsps[1][0..], LPC_ORD);
        bw_expand_lsps(&mut lsps[1][0..], LPC_ORD, 50.0, 100.0);

        /* interpolate ------------------------------------------------*/

        /* Wo and energy are sampled every 20ms, so we interpolate just 1
        10ms frame between 20ms samples */

        let (model0, model1) = model.split_at_mut(1);
        interp_Wo(
            &mut model0[0],
            &self.internal.prev_model_dec,
            &model1[0],
            self.internal.c2const.Wo_min,
        );
        e[0] = interp_energy(self.internal.prev_e_dec, e[1]);

        /* LSPs are sampled every 20ms so we interpolate the frame in
        between, then recover spectral amplitudes */

        let (lsps0, lsps1) = lsps.split_at_mut(1);
        interpolate_lsp_ver2(
            &mut lsps0[0][0..],
            &self.internal.prev_lsps_dec,
            &mut lsps1[0][0..],
            0.5,
            LPC_ORD,
        );

        for i in 0..2 {
            lsp_to_lpc(&lsps[i][0..], &mut ak[i][0..], LPC_ORD);
            aks_to_M2(
                &mut self.internal.fftr_fwd_cfg,
                &ak[i][..],
                LPC_ORD,
                &mut model[i],
                e[i],
                &mut snr,
                0,
                0,
                self.internal.lpc_pf,
                self.internal.bass_boost,
                self.internal.beta,
                self.internal.gamma,
                &mut Aw,
            );
            apply_lpc_correction(&mut model[i]);
            self.synthesise_one_frame(
                &mut speech[self.internal.n_samp * i..],
                &mut model[i],
                &mut Aw,
                1.0,
            );
        }

        /* update memories for next frame ----------------------------*/
        self.internal.prev_model_dec = model[1];
        self.internal.prev_e_dec = e[1];
        for i in 0..LPC_ORD {
            self.internal.prev_lsps_dec[i] = lsps[1][i];
        }
    }

    /*---------------------------------------------------------------------------* \

      FUNCTION....: analyse_one_frame()
      AUTHOR......: David Rowe, conversion by Matt Weeks
      DATE CREATED: 23/8/2010

      Extract sinusoidal model parameters from 80 speech samples (10ms of
      speech).

    \*---------------------------------------------------------------------------*/
    fn analyse_one_frame(&mut self, model: &mut MODEL, speech: &[i16]) {
        let mut Sw = [COMP::new(); FFT_ENC];
        let n_samp = self.internal.n_samp;
        let m_pitch = self.internal.m_pitch;

        //  Read input speech
        for i in 0..m_pitch - n_samp {
            self.internal.Sn[i] = self.internal.Sn[i + n_samp];
        }
        for i in 0..n_samp {
            self.internal.Sn[i + m_pitch - n_samp] = speech[i].into();
        }
        self.internal.c2const.dft_speech(
            &self.internal.fft_fwd_cfg,
            &mut Sw,
            &self.internal.Sn,
            &self.internal.w,
        );

        //  Estimate pitch
        let mut pitch = 0.0;
        nlp::nlp(
            &mut self.internal.nlp,
            &self.internal.Sn,
            n_samp,
            &mut pitch,
            &Sw,
            &self.internal.W,
            &mut self.internal.prev_f0_enc,
        );
        model.Wo = TWO_PI / pitch;
        model.L = (PI / model.Wo as f64) as usize;

        //  estimate model parameters
        two_stage_pitch_refinement(&self.internal.c2const, model, &Sw);

        //  estimate phases when doing ML experiments
        estimate_amplitudes(model, &Sw, &self.internal.W, 0);
        est_voicing_mbe(&self.internal.c2const, model, &Sw, &self.internal.W);
    }

    /*---------------------------------------------------------------------------* \

      FUNCTION....: synthesise_one_frame()
      AUTHOR......: David Rowe, conversion by Matt Weeks
      DATE CREATED: 23/8/2010

      Synthesise 80 speech samples (10ms) from model parameters.

    \*---------------------------------------------------------------------------*/
    fn synthesise_one_frame(
        &mut self,
        speech: &mut [i16],
        model: &mut MODEL,
        Aw: &[COMP],
        gain: f32,
    ) {
        //  LPC based phase synthesis
        let mut H = [COMP::new(); MAX_AMP + 1];
        sample_phase(model, &mut H, Aw);
        phase_synth_zero_order(
            self.internal.n_samp,
            model,
            &mut self.internal.ex_phase,
            &mut H,
        );

        postfilter(model, &mut self.internal.bg_est);
        synthesise(
            self.internal.n_samp,
            &mut self.internal.fftr_inv_cfg,
            &mut self.internal.Sn_,
            model,
            &self.internal.Pn,
            true,
        );

        for i in 0..self.internal.n_samp {
            self.internal.Sn_[i] *= gain;
        }

        ear_protection(&mut self.internal.Sn_, self.internal.n_samp);

        for i in 0..self.internal.n_samp {
            if self.internal.Sn_[i] > 32767.0 {
                speech[i] = 32767;
            } else if self.internal.Sn_[i] < -32767.0 {
                speech[i] = -32767;
            } else {
                speech[i] = self.internal.Sn_[i] as i16;
            }
        }
    }
}

/*---------------------------------------------------------------------------* \

  FUNCTION....: ear_protection()
  AUTHOR......: David Rowe, conversion by Matt Weeks
  DATE CREATED: Nov 7 2012

  Limits output level to protect ears when there are bit errors or the input
  is overdriven.  This doesn't correct or mask bit errors, just reduces the
  worst of their damage.

\*---------------------------------------------------------------------------*/
fn ear_protection(in_out: &mut [f32], n: usize) {
    //  find maximum sample in frame

    let mut max_sample = 0.0;
    for i in 0..n {
        if in_out[i] > max_sample {
            max_sample = in_out[i];
        }
    }

    //  determine how far above set point

    let over = max_sample / 30000.0;

    /* If we are x dB over set point we reduce level by 2x dB, this
    attenuates major excursions in amplitude (likely to be caused
    by bit errors) more than smaller ones */

    if over > 1.0 {
        let gain = 1.0 / (over * over);
        for i in 0..n {
            in_out[i] *= gain;
        }
    }
}

/*---------------------------------------------------------------------------*\

  est_voicing_mbe()

  Returns the error of the MBE cost function for a fiven F0.

  Note: I think a lot of the operations below can be simplified as
  W[].i = 0 and has been normalised such that den always equals 1.

\*---------------------------------------------------------------------------*/
fn est_voicing_mbe(c2const: &C2const, model: &mut MODEL, Sw: &[COMP], W: &[f32]) -> f32 {
    let mut Am = COMP::new(); // amplitude sample for this band
    let mut Ew = COMP::new();

    let l_1000hz = (model.L as f32 * 1000.0 / ((c2const.Fs / 2) as f32)) as usize;
    let mut sig = 1E-4;
    for l in 1..l_1000hz + 1 {
        sig += model.A[l] * model.A[l];
    }

    let Wo = model.Wo;
    let mut error = 1E-4; //accumulated error between original and synthesised

    //  Just test across the harmonics in the first 1000 Hz

    for l in 1..l_1000hz + 1 {
        Am.r = 0.0;
        Am.i = 0.0;
        let mut den = 0.0; //denominator of Am expression
        let al = ((l as f32 - 0.5) * Wo * (FFT_ENC as f32) / TWO_PI).ceil() as usize;
        let bl = ((l as f32 + 0.5) * Wo * (FFT_ENC as f32) / TWO_PI).ceil() as usize;

        //  Estimate amplitude of harmonic assuming harmonic is totally voiced

        // centers Hw[] about current harmonic
        let offset =
            (FFT_ENC as f32 / 2.0 - (l as f32) * Wo * (FFT_ENC as f32) / TWO_PI + 0.5) as usize;
        for m in al..bl {
            Am.r += Sw[m].r * W[offset + m];
            Am.i += Sw[m].i * W[offset + m];
            den += W[offset + m] * W[offset + m];
        }

        Am.r = Am.r / den;
        Am.i = Am.i / den;

        //  Determine error between estimated harmonic and original

        for m in al..bl {
            Ew.r = Sw[m].r - Am.r * W[offset + m];
            Ew.i = Sw[m].i - Am.i * W[offset + m];
            error += Ew.r * Ew.r;
            error += Ew.i * Ew.i;
        }
    }

    let snr = 10.0 * (sig / error).log10();
    if snr > V_THRESH {
        model.voiced = 1;
    } else {
        model.voiced = 0;
    }
    //  post processing, helps clean up some voicing errors ------------------

    /*
       Determine the ratio of low freqency to high frequency energy,
       voiced speech tends to be dominated by low frequency energy,
       unvoiced by high frequency. This measure can be used to
       determine if we have made any gross errors.
    */

    let l_2000hz = (model.L as f32 * 2000.0 / (c2const.Fs as f32 / 2.0)) as usize;
    let l_4000hz = (model.L as f32 * 4000.0 / (c2const.Fs as f32 / 2.0)) as usize;
    let mut ehigh = 1E-4;
    let mut elow = ehigh;
    for l in 1..l_2000hz + 1 {
        elow += model.A[l] * model.A[l];
    }
    for l in l_2000hz..l_4000hz + 1 {
        ehigh += model.A[l] * model.A[l];
    }
    let eratio = 10.0 * (elow / ehigh).log10();

    /* Look for Type 1 errors, strongly V speech that has been
    accidentally declared UV */

    if model.voiced == 0 {
        if eratio > 10.0 {
            model.voiced = 1;
        }
    }
    /* Look for Type 2 errors, strongly UV speech that has been
    accidentally declared V */

    if model.voiced == 1 {
        if eratio < -10.0 {
            model.voiced = 0;
        }
        /* A common source of Type 2 errors is the pitch estimator
        gives a low (50Hz) estimate for UV speech, which gives a
        good match with noise due to the close harmoonic spacing.
        These errors are much more common than people with 50Hz3
        pitch, so we have just a small eratio threshold. */

        let sixty = 60.0 * TWO_PI / (c2const.Fs as f32);
        if (eratio < -4.0) && (model.Wo <= sixty) {
            model.voiced = 0;
        }
    }

    return snr;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: estimate_amplitudes
  AUTHOR......: David Rowe, conversion by Matt Weeks
  DATE CREATED: 27/5/94

  Estimates the complex amplitudes of the harmonics.

\*---------------------------------------------------------------------------*/
fn estimate_amplitudes(model: &mut MODEL, Sw: &[COMP], _W: &[f32], est_phase: i32) {
    let r = TWO_PI / (FFT_ENC as f32);
    let one_on_r = 1.0 / r;

    for m in 1..model.L + 1 {
        //  Estimate ampltude of harmonic

        let mut den = 0.0; // denominator of amplitude expression
                           // bounds of current harmonic
        let am = ((m as f32 - 0.5) * model.Wo * one_on_r + 0.5) as usize;
        let bm = ((m as f32 + 0.5) * model.Wo * one_on_r + 0.5) as usize;

        for i in am..bm {
            den += Sw[i].r * Sw[i].r + Sw[i].i * Sw[i].i;
        }

        model.A[m] = den.sqrt();

        if est_phase != 0 {
            let b = (m as f32 * model.Wo / r + 0.5) as usize; //  DFT bin of centre of current harmonic

            /* Estimate phase of harmonic, this is expensive in CPU for
            embedded devicesso we make it an option */

            model.phi[m] = Sw[b].i.atan2(Sw[b].r);
        }
    }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: two_stage_pitch_refinement
  AUTHOR......: David Rowe, conversion by Matt Weeks
  DATE CREATED: 27/5/94

  Refines the current pitch estimate using the harmonic sum pitch
  estimation technique.

\*---------------------------------------------------------------------------*/
fn two_stage_pitch_refinement(c2const: &C2const, model: &mut MODEL, Sw: &[COMP]) {
    //  Coarse refinement
    //  pitch refinment minimum, maximum and step
    let mut pmax = TWO_PI / model.Wo + 5.0;
    let mut pmin = TWO_PI / model.Wo - 5.0;
    let mut pstep = 1.0;
    hs_pitch_refinement(model, Sw, pmin, pmax, pstep);

    //  Fine refinement

    pmax = TWO_PI / model.Wo + 1.0;
    pmin = TWO_PI / model.Wo - 1.0;
    pstep = 0.25;
    hs_pitch_refinement(model, Sw, pmin, pmax, pstep);

    //  Limit range

    if model.Wo < TWO_PI / (c2const.p_max as f32) {
        model.Wo = TWO_PI / (c2const.p_max as f32);
    }
    if model.Wo > TWO_PI / (c2const.p_min as f32) {
        model.Wo = TWO_PI / (c2const.p_min as f32);
    }

    model.L = (PI / model.Wo as f64).floor() as usize;

    //  trap occasional round off issues with floorf()
    if model.Wo * model.L as f32 >= 0.95 * PI as f32 {
        model.L -= 1;
    }
    //  assert(model.Wo*model.L < PI);
}

/*---------------------------------------------------------------------------*\

 FUNCTION....: hs_pitch_refinement
 AUTHOR......: David Rowe, conversion by Matt Weeks
 DATE CREATED: 27/5/94

 Harmonic sum pitch refinement function.

 pmin   pitch search range minimum
 pmax	pitch search range maximum
 step   pitch search step size
 model	current pitch estimate in model.Wo

 model 	refined pitch estimate in model.Wo

\*---------------------------------------------------------------------------*/
fn hs_pitch_refinement(model: &mut MODEL, Sw: &[COMP], pmin: f32, pmax: f32, pstep: f32) {
    //  Initialisation

    model.L = (PI / model.Wo as f64) as usize; //  use initial pitch est. for L
    let mut Wom = model.Wo; // Wo that maximises E
    let mut Em = 0.0; // mamimum energy
    let r = TWO_PI / FFT_ENC as f32; // number of rads/bin
    let one_on_r = 1.0 / r;

    //  Determine harmonic sum for a range of Wo values
    let mut p = pmin; // current pitch
    while p <= pmax {
        let mut E = 0.0; //energy for current pitch
        let Wo = TWO_PI / p; // current "test" fundamental freq.

        //  Sum harmonic magnitudes
        for m in 1..model.L + 1 {
            // bin for current harmonic centre
            let b = (m as f32 * Wo * one_on_r + 0.5) as usize;
            E += Sw[b].r * Sw[b].r + Sw[b].i * Sw[b].i;
        }
        //  Compare to see if this is a maximum

        if E > Em {
            Em = E;
            Wom = Wo;
        }
        p += pstep;
    }

    model.Wo = Wom;
}