1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
//! A very minimal no_std [Consistent Overhead Byte
//! Stuffing](https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing)
//! library written in Rust. The COBS algorithm, and thus also this crate, provides
//! an encoding for arbitrary data which removes any occurrence of a specific marker
//! byte. This is mostly useful when we are transferring arbitrary data which
//! is terminated with a null byte, and therefore we don't want our arbitrary data
//! buffer to contain any null bytes. In fact, this crate will automatically the
//! marker byte at the end of any encoded buffer.
//!
//! ## Features
//!
//! The *cobs-rs* crate only provides two specific functions. Namely, the
//! [`stuff`] and the [`unstuff`] function, which encode and decode respectively. This, together
//! with the fact that the crate doesn't use the [`std`](https://doc.rust-lang.org/std/index.html),
//! makes the crate perfect for embedded hardware. However, it can also be used outside of embedded
//! systems.
//!
//! ## Usage
//!
//! Both the encode([`stuff`]) and decode([`unstuff`]) functions, use [const
//! generics](https://blog.rust-lang.org/2021/02/26/const-generics-mvp-beta). This
//! may make usage a bit counter-intuitive for people unfamiliar with this feature
//! at first.
//!
//! Something to take into account here is that the COBS algorithm will __at most__
//! add `2 + (size of input buffer / 256)` (with integer division) bytes to the
//! encoded buffer in size compared to input buffer. This fact allows us to always
//! reserve enough space for the output buffer.
//!
//! ### Encoding buffers
//!
//! Let us have a look at a small example of how to encode some data using the
//! [`stuff`] function.
//!
//! ```no_run
//! let data: [u8; 254] = [
//!     // ...snip
//! # 0; 254
//! ];
//!
//! // Our input buffer is 254 bytes long.
//! // Thus, we need to reserve 2 + (254 / 256) = 2 extra bytes
//! // for the encoded buffer.
//! let encoded: [u8; 256] = cobs_rs::stuff(data, 0x00);
//!
//! // We can also encode much larger buffers
//! let a_lot_of_data: [u8; 1337] = [
//!     // ...snip
//! # 0; 1337
//! ];
//!
//! // Our input buffer is 1337 bytes long.
//! // Thus, we need to reserve 2 + (1337 / 256) = 7 extra bytes
//! // for the encoded buffer.
//! let a_lot_of_output: [u8; 1344] = cobs_rs::stuff(a_lot_of_data, 0x00);
//! ```
//!
//! > **Note:** The output buffer type specifications are always necessary. The type
//! > specifications for the input data isn't necessary most of the time.
//!
//! ### Decoding buffers
//!
//! Now, let us look at an example of how to decode data using the [`unstuff`] function.
//!
//! It is generally a good idea to reserve `size of encoded buffer - 2` bytes for
//! the decoded buffer. With this rule, we will always have enough space for the
//! encoded buffer. Next to the decoded buffer, the [`unstuff`] function will
//! also return the actual filled size of the buffer.
//!
//! ```no_run
//! // We are given some encoded data buffer
//! let encoded_data: [u8; 256] = [
//!     //... snip
//! # 0; 256
//! ];
//!
//! // We reserve 256 - 2 = 254 bytes for the decoded buffer.
//! let (decoded_data, decoded_data_length): ([u8; 254], usize) =
//!     cobs_rs::unstuff(encoded_data, 0x00);
//!
//! // We can also decode bigger buffers
//! let a_lot_of_encoded_data: [u8; 1344] = [
//!     //... snip
//! # 0; 1344
//! ];
//!
//! // We reserve 1344 - 2 = 1342 bytes for the decoded buffer.
//! let (a_lot_of_decoded_data, a_lot_of_decoded_data_length): ([u8; 1342], usize) =
//!     cobs_rs::unstuff(encoded_data, 0x00);
//! ```
//!
//! > **Note:** The decoded buffer type specifications are always necessary. The
//! > type specifications for the encoded data isn't necessary most of the time.
//!
//! ## License
//!
//! Licensed under a __MIT__ license.

#![no_std]
#![warn(missing_docs)]

use core::convert::TryInto;

struct MarkerInfo {
    index: usize,
    points_to: usize,
}

impl MarkerInfo {
    fn adjust_accordingly<const SIZE: usize>(
        &mut self,
        out_buffer: &mut [u8; SIZE],
        new_index: usize,
    ) {
        out_buffer[self.index] = (new_index - self.index).try_into().unwrap();

        self.index = new_index;
        self.points_to = new_index + 0xff;
    }
}

/// Takes an input buffer and a marker value and COBS-encodes it to an output buffer.
///
/// Removes all occurrences of the marker value and adds one occurrence at the end. The returned
/// buffer should at least be 2 greater than the input buffer and for roughly 256 bytes there is a
/// possibility for an extra byte in the output buffer. All left-over space will and the end of
/// the buffer and will be filled with the marker value.
///
/// # Examples
///
/// ## Stuffing arbitrary data
///
/// ```
/// let transfer: [u8; 256] = cobs_rs::stuff(
///     *b"Hi everyone! This is a pretty nifty example.",
///     b'i'
/// );
///
/// // Now the data won't contain 'i's anymore except for the terminator byte.
/// # assert!(transfer[..45].into_iter().all(|byte| *byte != b'i'));
/// ```
///
/// ## Making sure there are no null bytes anymore
///
/// ```
/// let data = [
///     // ...snip
/// #       1
/// ];
///
/// let transfer: [u8; 256] = cobs_rs::stuff(data, 0x00);
///
/// // Now the data won't contain null bytes anymore except for the terminator byte.
/// ```
///
/// # Panics
///
/// This function panics when the output buffer doesn't have enough space to fill the data from the
/// input buffer with.
pub fn stuff<const INPUT: usize, const OUTPUT: usize>(
    buff: [u8; INPUT],
    marker: u8,
) -> [u8; OUTPUT] {
    let mut output_buffer: [u8; OUTPUT] = [marker; OUTPUT];

    // Keep track of where the last marker was.
    // This always has one in the beginning, which is the overhead byte.
    let mut last_marker = MarkerInfo {
        index: 0,
        points_to: 0xff,
    };

    // Every time we set additional overhead marker, we should increase the offset.
    // This way we keep track what the relationship is between the input array indices and the
    // output array indices.
    let mut overhead_bytes = 1;

    // Loop through all the input bytes.
    for i in 0..INPUT {
        // Fetch the value of the input byte array.
        let value = buff[i];

        if last_marker.points_to == (overhead_bytes + i) {
            // Update the last marker and set the marker info to this new overhead byte.
            last_marker.adjust_accordingly(&mut output_buffer, overhead_bytes + i);

            // Say that we have another overhead byte.
            overhead_bytes += 1;
        }

        // If the current input value is a marker, adjust the previous marker accordingly and skip
        // the setting of the value, although it doesn't really matter.
        if value == marker {
            // Update the last marker value and info to this new marker.
            last_marker.adjust_accordingly(&mut output_buffer, overhead_bytes + i);

            continue;
        }

        // Update the output buffer value
        output_buffer[overhead_bytes + i] = value;
    }

    // For the last byte we update the previous marker.
    output_buffer[last_marker.index] = (INPUT + overhead_bytes - last_marker.index)
        .try_into()
        .unwrap();

    output_buffer
}

/// Takes an input buffer and a marker value and COBS-decodes it to an output buffer.
///
/// Removes all overhead bytes, inserts the marker where appropriate and __stops immediately__ when
/// a marker value is found. The size of output buffer is at least 2 bytes smaller than the size
/// of the input buffer. All left-over space will and the end of the buffer and will be filled with
/// the `0x00` bytes. The tuple returned contains both the decoded buffer and the actual filled
/// length of that buffer.
///
/// # Examples
///
/// ```no_run
/// let transferred_data: [u8; 258] = [
///     // ... snip
/// # 0; 258
/// ];
///
/// // We convert the COBS-encoded transferred_data to the plain data
/// // using the unstuff function.
/// let (plain_data, plain_data_length): ([u8; 256], usize) =
///     cobs_rs::unstuff(transferred_data, 0x00);
///
/// // ... snip
/// ```
///
/// # Panics
///
/// If we don't have a marker value in the encoded data buffer, the function panics.
///
/// This function also panics when the output buffer doesn't have enough space to fill the data
/// from the input buffer with. This never happens if we reserve the maximum possible memory for
/// the output, that being two less bytes than the input buffer.
pub fn unstuff<const INPUT: usize, const OUTPUT: usize>(
    buff: [u8; INPUT],
    marker: u8,
) -> ([u8; OUTPUT], usize) {
    let mut output_buffer = [0; OUTPUT];

    // Keep track when the next marker will be. Initial this will be after the first overhead byte
    // value. We have to do minus 1 here, because we start our loop at 1 instead of 0.
    let mut until_next_marker = buff[0] - 1;
    // If this bits value is 0xff, we know that the next value will be an overhead byte, so keep
    // track of that.
    let mut next_is_overhead_byte = buff[0] == 0xff;

    // Keep track of the amount of overhead bytes, so that we can compensate for it when filling
    // our output buffer.
    let mut overhead_bytes = 1;

    // We can skip byte since it is the overhead byte we already know about.
    let mut i = 1;

    let output_buffer_length = loop {
        // Fetch the value from the input buffer.
        let value = buff[i];

        // If we value is the marker, we know we have reached the end.
        if value == marker {
            break i - overhead_bytes - 1;
        }

        // If the current character is a marker or a overhead byte.
        if until_next_marker == 0 {
            // We know that the distance to the next marker will be the value of this marker.
            until_next_marker = value;

            // If this byte was a overhead byte.
            if next_is_overhead_byte {
                // Keep that that we passed another overhead byte.
                overhead_bytes += 1;
            } else {
                // If it wasn't a overhead byte, we can set this byte to the marker byte.
                output_buffer[i - overhead_bytes] = marker;
            }

            // Check whether the next byte will be a overhead byte.
            next_is_overhead_byte = until_next_marker == 0xff;
        } else {
            // If we are not on a marker or overhead byte we can just copy the value over.
            output_buffer[i - overhead_bytes] = value;
        }

        until_next_marker -= 1;

        if i < INPUT {
            i += 1;
        } else {
            panic!("No marker value found!");
        }
    } + 1;

    (output_buffer, output_buffer_length)
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::ops::Range;

    #[derive(Debug)]
    struct TestVector<const N: usize, const M: usize> {
        unencoded_data: [u8; N],
        encoded_data: [u8; M],
    }

    impl<const N: usize, const M: usize> TestVector<N, M> {
        const fn new(unencoded_data: [u8; N], encoded_data: [u8; M]) -> Self {
            Self {
                unencoded_data,
                encoded_data,
            }
        }

        fn assert_stuff(&self) {
            assert_eq!(stuff::<N, M>(self.unencoded_data, 0x00), self.encoded_data);
        }

        fn assert_unstuff(&self) {
            assert_eq!(
                unstuff::<M, N>(self.encoded_data, 0x00),
                (self.unencoded_data, self.unencoded_data.len())
            );
        }

        fn assert_stuff_then_unstuff(&self) {
            assert_eq!(
                unstuff::<M, N>(stuff(self.unencoded_data, 0x00), 0x00),
                (self.unencoded_data, self.unencoded_data.len())
            );
        }

        fn assert_unstuff_then_stuff(&self) {
            assert_eq!(
                stuff::<N, M>(unstuff(self.encoded_data, 0x00).0, 0x00),
                self.encoded_data
            );
        }
    }

    fn get_range<const N: usize>(
        mut initial: [u8; N],
        start_index: usize,
        range: Range<u8>,
    ) -> [u8; N] {
        for (index, value) in range.enumerate() {
            initial[index + start_index] = value;
        }

        initial
    }

    const TV_1: TestVector<1, 3> = TestVector::new([0x00], [0x01, 0x01, 0x00]);
    const TV_2: TestVector<2, 4> = TestVector::new([0x00, 0x00], [0x01, 0x01, 0x01, 0x00]);
    const TV_3: TestVector<4, 6> = TestVector::new(
        [0x11, 0x22, 0x00, 0x33],
        [0x03, 0x11, 0x22, 0x02, 0x33, 0x00],
    );
    const TV_4: TestVector<4, 6> = TestVector::new(
        [0x11, 0x22, 0x33, 0x44],
        [0x05, 0x11, 0x22, 0x33, 0x44, 0x00],
    );
    const TV_5: TestVector<4, 6> = TestVector::new(
        [0x11, 0x00, 0x00, 0x00],
        [0x02, 0x11, 0x01, 0x01, 0x01, 0x00],
    );
    fn tv_6() -> TestVector<254, 256> {
        TestVector::new(
            get_range([0; 254], 0, 0x01..0xff),
            get_range(
                {
                    let mut arr = [0; 256];
                    arr[0] = 0xff;
                    arr
                },
                1,
                0x01..0xff,
            ),
        )
    }
    fn tv_7() -> TestVector<255, 257> {
        TestVector::new(
            get_range([0; 255], 0, 0x00..0xff),
            get_range(
                {
                    let mut arr = [0; 257];
                    arr[0] = 0x01;
                    arr[1] = 0xff;
                    arr
                },
                2,
                0x01..0xff,
            ),
        )
    }

    fn tv_8() -> TestVector<255, 258> {
        TestVector::new(
            get_range([0xff; 255], 0, 0x01..0xff),
            get_range(
                {
                    let mut arr = [0; 258];
                    arr[0] = 0xff;
                    arr[255] = 0x02;
                    arr[256] = 0xff;
                    arr
                },
                1,
                0x01..0xff,
            ),
        )
    }

    fn tv_9() -> TestVector<255, 258> {
        TestVector::new(
            get_range(
                {
                    let mut arr = [0xff; 255];
                    arr[254] = 0;
                    arr
                },
                0,
                0x02..0xff,
            ),
            get_range(
                {
                    let mut arr = [0; 258];
                    arr[0] = 0xff;
                    arr[254] = 0xff;
                    arr[255] = 0x01;
                    arr[256] = 0x01;
                    arr
                },
                1,
                0x02..0xff,
            ),
        )
    }

    fn tv_10() -> TestVector<255, 257> {
        TestVector::new(
            get_range(
                {
                    let mut arr = [0xff; 255];
                    arr[253] = 0x00;
                    arr[254] = 0x01;
                    arr
                },
                0,
                0x03..0xff,
            ),
            get_range(
                {
                    let mut arr = [0; 257];
                    arr[0] = 0xfe;
                    arr[253] = 0xff;
                    arr[254] = 0x02;
                    arr[255] = 0x01;
                    arr
                },
                1,
                0x03..0xff,
            ),
        )
    }

    #[test]
    fn stuff_test_vectors() {
        TV_1.assert_stuff();
        TV_2.assert_stuff();
        TV_3.assert_stuff();
        TV_4.assert_stuff();
        TV_5.assert_stuff();
        tv_6().assert_stuff();
        tv_7().assert_stuff();
        tv_8().assert_stuff();
        tv_9().assert_stuff();
        tv_10().assert_stuff();
    }

    #[test]
    fn unstuff_test_vectors() {
        TV_1.assert_unstuff();
        TV_2.assert_unstuff();
        TV_3.assert_unstuff();
        TV_4.assert_unstuff();
        TV_5.assert_unstuff();
        tv_6().assert_unstuff();
        tv_7().assert_unstuff();
        tv_8().assert_unstuff();
        tv_9().assert_unstuff();
        tv_10().assert_unstuff();

        assert_eq!(
            unstuff([0x01, 0x01, 0x00], 0x00),
            ([0x00, 0x00, 0x00, 0x00], 1)
        );
        assert_eq!(
            unstuff([0x02, 0x01, 0x00], 0x00),
            ([0x01, 0x00, 0x00, 0x00], 1)
        );
    }

    #[test]
    fn inverses() {
        TV_1.assert_stuff_then_unstuff();
        TV_2.assert_stuff_then_unstuff();
        TV_3.assert_stuff_then_unstuff();
        TV_4.assert_stuff_then_unstuff();
        TV_5.assert_stuff_then_unstuff();
        tv_6().assert_stuff_then_unstuff();
        tv_7().assert_stuff_then_unstuff();
        tv_8().assert_stuff_then_unstuff();
        tv_9().assert_stuff_then_unstuff();
        tv_10().assert_stuff_then_unstuff();

        TV_1.assert_unstuff_then_stuff();
        TV_2.assert_unstuff_then_stuff();
        TV_3.assert_unstuff_then_stuff();
        TV_4.assert_unstuff_then_stuff();
        TV_5.assert_unstuff_then_stuff();
        tv_6().assert_unstuff_then_stuff();
        tv_7().assert_unstuff_then_stuff();
        tv_8().assert_unstuff_then_stuff();
        tv_9().assert_unstuff_then_stuff();
        tv_10().assert_unstuff_then_stuff();
    }
}