1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
//! # Cortex-M Interrupt Move
//!
//! It's the next best thing to moving to interrupt context.
//!
//! ## Examples
//!
//! Check out the full examples in the [`app-examples`](./app-examples) folder.
//!
//! ## The goal
//!
//! The goal here is to replace usage of a mutex which may require an entire critical section, and instead model "Moving" of data to an interrupt context.
//!
//! This means that we don't need a critical section to access it, we just need to be in the interrupt we moved the data to.
//!
//! Here's how it works:
//!
//! ```rust, no_run
//! #![no_main]
//!
//! // CMIM items
//! use cmim::{
//!     Move,
//!     Context,
//!     Exception,
//! };
//!
//! // Used to set the program entry point
//! use cortex_m_rt::{entry, exception};
//!
//! use embedded_hal::timer::Cancel;
//!
//! // Provides definitions for our development board
//! use dwm1001::{
//!     cortex_m::peripheral::syst::SystClkSource::Core,
//!     nrf52832_hal::{
//!         nrf52832_pac::{interrupt, Interrupt, TIMER1, UARTE0},
//!         prelude::*,
//!         Timer, Uarte,
//!     },
//!     DWM1001,
//! };
//!
//! static TIMER_1_DATA: Move<Timer1Data, Interrupt> = Move::new_uninitialized(Context::Interrupt(Interrupt::TIMER1));
//! static SYSTICK_DATA: Move<SysTickData, Interrupt> = Move::new_uninitialized(Context::Exception(Exception::SysTick));
//!
//! struct Timer1Data {
//!     uart: Uarte<UARTE0>,
//!     timer: Timer<TIMER1>,
//!     led: dwm1001::Led,
//!     toggle: bool,
//! }
//!
//! struct SysTickData {
//!     led: dwm1001::Led,
//!     toggle: bool,
//! }
//!
//! #[entry]
//! fn main() -> ! {
//!     if let Some(mut board) = DWM1001::take() {
//!         let mut timer = board.TIMER0.constrain();
//!         let mut _rng = board.RNG.constrain();
//!
//!         let mut itimer = board.TIMER1.constrain();
//!         itimer.start(1_000_000u32);
//!         itimer.enable_interrupt(&mut board.NVIC);
//!
//!         // Core clock is 64MHz, blink at 16Hz
//!         board.SYST.set_clock_source(Core);
//!         board.SYST.set_reload(4_000_000 - 1);
//!         board.SYST.enable_counter();
//!         board.SYST.enable_interrupt();
//!
//!         TIMER_1_DATA
//!             .try_move(Timer1Data {
//!                 uart: board.uart,
//!                 timer: itimer,
//!                 led: board.leds.D9,
//!                 toggle: false,
//!             })
//!             .ok();
//!
//!         SYSTICK_DATA
//!             .try_move(SysTickData {
//!                 led: board.leds.D12,
//!                 toggle: false,
//!             })
//!             .ok();
//!
//!         let mut toggle = false;
//!
//!         loop {
//!             // board.leds.D9  - Top LED GREEN
//!             // board.leds.D12 - Top LED RED
//!             // board.leds.D11 - Bottom LED RED
//!             // board.leds.D10 - Bottom LED BLUE
//!             if toggle {
//!                 board.leds.D10.enable();
//!             } else {
//!                 board.leds.D10.disable();
//!             }
//!
//!             toggle = !toggle;
//!
//!             timer.delay(250_000);
//!         }
//!     }
//!
//!     loop {
//!         continue;
//!     }
//! }
//!
//! #[exception]
//! fn SysTick() {
//!     SYSTICK_DATA
//!         .try_lock(|data| {
//!             // Blink the LED
//!             if data.toggle {
//!                 data.led.enable();
//!             } else {
//!                 data.led.disable();
//!             }
//!
//!             data.toggle = !data.toggle;
//!         })
//!         .ok();
//! }
//!
//! #[interrupt]
//! fn TIMER1() {
//!     TIMER_1_DATA
//!         .try_lock(|data| {
//!             // Start the timer again first for accuracy
//!             data.timer.cancel().unwrap();
//!             data.timer.start(1_000_000u32);
//!
//!             // Write message to UART. The NRF UART requires data
//!             // to be in RAM, not flash.
//!             const MSG_BYTES: &[u8] = "Blink!\r\n".as_bytes();
//!             let mut buf = [0u8; MSG_BYTES.len()];
//!             buf.copy_from_slice(MSG_BYTES);
//!
//!             data.uart.write(&buf).unwrap();
//!
//!             // Blink the LED
//!             if data.toggle {
//!                 data.led.enable();
//!             } else {
//!                 data.led.disable();
//!             }
//!
//!             data.toggle = !data.toggle;
//!         })
//!         .ok();
//! }
//! ```
//!
//!
//! # License
//!
//! Licensed under either of
//!
//! - Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
//!   http://www.apache.org/licenses/LICENSE-2.0)
//!
//! - MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
//!
//! at your option.
//!
//! ## Contribution
//!
//! Unless you explicitly state otherwise, any contribution intentionally submitted
//! for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
//! dual licensed as above, without any additional terms or conditions.

#![no_std]

use core::{
    cell::UnsafeCell,
    cmp::PartialEq,
    mem::MaybeUninit,
    result::Result,
    sync::atomic::{AtomicU8, Ordering},
};

use bare_metal::Nr;
use cortex_m::interrupt::free;
use cortex_m::peripheral::{scb::VectActive, SCB};
pub use cortex_m::peripheral::scb::Exception;

/// Context is the place where data will be moved to. This can be either
/// interrupt context, or exception context
pub enum Context<I> {
    /// An Exception, such as SysTick. Re-exported from the `cortex-m` crate
    Exception(Exception),

    /// A device specific interrupt, as defined by a `-pac` crate
    Interrupt(I),
}

impl<I: Nr> PartialEq<VectActive> for Context<I> {
    fn eq(&self, other: &VectActive) -> bool {
        match (self, other) {
            (Context::Exception(e_s), VectActive::Exception(e_o)) => e_s == e_o,
            (Context::Interrupt(i_s), VectActive::Interrupt{ irqn }) => i_s.nr() == *irqn,
            _ => false,
        }
    }
}

/// Move is a structure that is intended to be stored as a static variable,
/// and represents a metaphorical "move" to an interrupt context. Data is moved
/// to the interrupt context by calling `try_move` from thread (non-interrupt)
/// context, and the data can be retrived within a selected interrupt using the
/// `try_lock` method.
pub struct Move<T, I> {
    /// `data` contains the user data, which may or may not be initialized
    data: UnsafeCell<MaybeUninit<T>>,

    // `state` is a runtime tracking of our current state.
    state: AtomicU8,

    context: Context<I>,
}

unsafe impl<T, I> Sync for Move<T, I>
where
    T: Send + Sized,
    I: Nr,
{
}

impl<T, I> Move<T, I> {
    /// The data is uninitialized
    const UNINIT: u8 = 0;

    /// The data is initialized and not currently locked
    const INIT_AND_IDLE: u8 = 1;

    /// The data is initialized, but currently locked by an interrupt
    const LOCKED: u8 = 2;

    /// Create a new `Move` structure without initializing the data contained by it.
    /// This is best used when the data cannot be initialized until runtime, such as
    /// a HAL peripheral, or the producer or consumer of a queue.
    ///
    /// Before using this in interrupt context, you must initialize it with the
    /// `try_move` function, or it will return errors upon access.
    ///
    /// You must provide the context that is allowed to later access this data
    /// as the `ctxt` argument
    pub const fn new_uninitialized(ctxt: Context<I>) -> Self {
        Move {
            data: UnsafeCell::new(MaybeUninit::uninit()),
            state: AtomicU8::new(Self::UNINIT),
            context: ctxt,
        }
    }

     /// Create a new `Move` structure, and initialize the data contained within it.
     /// This is best used when the data contained within is `const`, and doesn't require
     /// runtime initialization.
     ///
     /// This does not require further interaction before use in interrupt context.
     ///
     /// You must provide the context that is allowed to later access this data
     /// as the `ctxt` argument
    pub const fn new(data: T, ctxt: Context<I>) -> Self {
        Move {
            data: UnsafeCell::new(MaybeUninit::new(data)),
            state: AtomicU8::new(Self::UNINIT),
            context: ctxt,
        }
    }
}

impl<T, I> Move<T, I>
where
    T: Send + Sized,
    I: Nr,
{
    /// Attempt to initialize the data of the `Move` structure.
    /// This *MUST* be called from non-interrupt context, and a critical
    /// section will be in place while setting the data.
    ///
    /// Returns:
    ///
    /// * Ok(Some(T)): If we are in thread mode and the data was previously initialized
    /// * Ok(None): If we are in thread mode and the data was not previously initialized
    /// * Err(T): If we are not in thread mode (e.g. an interrupt is active), return the
    ///     data that was going to be moved
    pub fn try_move(&self, data: T) -> Result<Option<T>, T> {
        free(|_cs| {
            // Check if we are in non-interrupt context
            match SCB::vect_active() {
                // TODO: Would it be reasonable to initialize this from a DIFFERENT
                // interrupt context? Basically anything but the destination interrupt?
                VectActive::ThreadMode => {}
                _ => {
                    return Err(data);
                }
            }

            // Since we are in a critical section, it is not necessary to perform
            // an atomic compare and swap, as we cannot be pre-empted
            match self.state.load(Ordering::SeqCst) {
                Self::UNINIT => {
                    unsafe {
                        // Reference to an uninitialized MaybeUninit
                        let mu_ref = &mut *self.data.get();

                        // Get a pointer to the data, and use ptr::write to avoid
                        // viewing or creating a reference to uninitialized data
                        let dat_ptr = mu_ref.as_mut_ptr();
                        dat_ptr.write(data);
                    }
                    self.state.store(Self::INIT_AND_IDLE, Ordering::SeqCst);
                    Ok(None)
                }
                Self::INIT_AND_IDLE => {
                    let old = unsafe {
                        // Reference to an initialized MaybeUninit
                        let mu_ref = &mut *self.data.get();

                        // Get a pointer to the data, and use ptr::replace,
                        // a mem::swap is probably okay since this is initialized,
                        // but use ptr methods anyway
                        let dat_ptr = mu_ref.as_mut_ptr();
                        dat_ptr.replace(data)
                    };
                    Ok(Some(old))
                }
                Self::LOCKED | _ => Err(data),
            }
        })
    }

    /// Attempt to recover the data from the `Move` structure.
    /// This *MUST* be called from non-interrupt context, and a critical
    /// section will be in place while receiving the data.
    ///
    /// Returns:
    ///
    /// * Ok(Some(T)): If we are in thread mode and the data was previously initialized
    /// * Ok(None): If we are in thread mode and the data was not previously initialized
    /// * Err(()): If we are not in thread mode (e.g. an interrupt is active)
    pub fn try_free(&self) -> Result<Option<T>, ()> {
        free(|_cs| {
            // Check if we are in non-interrupt context
            match SCB::vect_active() {
                // TODO: Would it be reasonable to free this from a DIFFERENT
                // interrupt context? Basically anything but the destination interrupt?
                VectActive::ThreadMode => {}
                _ => {
                    return Err(());
                }
            }

            // Since we are in a critical section, it is not necessary to perform
            // an atomic compare and swap, as we cannot be pre-empted
            match self.state.load(Ordering::SeqCst) {
                Self::UNINIT => Ok(None),
                Self::INIT_AND_IDLE => {
                    let old = unsafe {
                        // Get a pointer to the initialized data
                        let mu_ptr = self.data.get();

                        // Replace it with an uninitialized field. I winder if this is
                        // just a no-op, or if we should explicitly zero the memory here
                        mu_ptr.replace(MaybeUninit::uninit()).assume_init()
                    };

                    self.state.store(Self::UNINIT, Ordering::SeqCst);

                    Ok(Some(old))
                }
                Self::LOCKED | _ => Err(()),
            }
        })
    }

    /// So, this isn't a classical mutex. It will *only* provide access if:
    ///
    /// * The selected interrupt/exception is currently active
    /// * The mutex has not already been locked
    ///
    /// If these conditions are met, then you can access the variable from within
    /// a closure
    pub fn try_lock<R>(&self, f: impl FnOnce(&mut T) -> R) -> Result<R, ()> {
        if self.context != SCB::vect_active() {
            return Err(());
        }

        // We know that the current interrupt is active, which means
        // that thread mode cannot resume until we exit this function.
        // We don't need to worry about compare and swap, because we
        // are now the only ones who can access this data
        match self.state.load(Ordering::SeqCst) {
            // The data is uninitialized. Don't provide access
            Self::UNINIT => Err(()),

            // The data is initialized, allow access within a closure
            // This prevents re-entrancy of re-calling lock within the
            // closure
            Self::INIT_AND_IDLE => {
                self.state.store(Self::LOCKED, Ordering::SeqCst);

                let dat_ref = unsafe {
                    // Create a mutable reference to an initialized MaybeUninit
                    let mu_ref = &mut *self.data.get();

                    // Create a mutable reference to the initialized data behind
                    // the MaybeUninit. This is fine, because the scope of this
                    // reference can only live to the end of this function, and
                    // cannot be captured by the closure used below.
                    //
                    // Additionally we have a re-entrancy check above, to prevent
                    // creating a duplicate &mut to the inner data
                    let dat_ptr = mu_ref.as_mut_ptr();
                    &mut *dat_ptr
                };

                // Call the user's closure, providing access to the data
                let ret = f(dat_ref);

                self.state.store(Self::INIT_AND_IDLE, Ordering::SeqCst);

                Ok(ret)
            }

            // The data is locked, or the status register is garbage.
            // Don't provide access
            Self::LOCKED | _ => Err(()),
        }
    }
}