1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//!
//! # clone-replace
//!
//! A [CloneReplace] is a synchronisation primitive that provides
//! owned handles for shared data.
//!
//! Example:
//! ```rust
//! use clone_replace::CloneReplace;
//!
//! let data = CloneReplace::new(1);
//!
//! let v1 = data.access();
//! assert_eq!(*v1, 1);
//! {
//!    let mut m = data.mutate();
//!    *m = 2;
//!    let v2 = data.access();
//!    assert_eq!(*v1, 1);
//!    assert_eq!(*v2, 1);
//! }
//! let v3 = data.access();
//! assert_eq!(*v3, 2);
//! assert_eq!(*v1, 1);
//! ```
//!
//! This is a primitive in a similar format to
//! [Mutex](std::sync::Mutex), in that it wraps data for
//! thread-safety, and provides access via guards.  A shared,
//! reference copy of the data is stored. When reading, a handle to an
//! immutable snapshot state is obtained, as an
//! [Arc](std::sync::Arc). All readers who access this version of the
//! data will receive handles to the same snapshot.
//!
//! To mutate the data, the reference copy is cloned into a mutable
//! guard object.  The writer is free to make whatever changes they
//! wish to this copy, and the new data will become the reference copy
//! for all subsequent reads and writes, whenever the guard is
//! dropped. No writes are visible whilst the guard is in scope.
//!
//! This is a somewhat niche primitive that has the following
//! properties:
//! - Readers can work with a coherent view for an extended period of
//!   time, without preventing writers from making updates, or other
//!   readers from seeing those updates.
//! - There are no lifetimes to plumb through for the guards: the data
//!   is owned. This is most significant before generic associated
//!   types stabilise, but it will remain an advantage for the
//!   simplicity of some use cases, compared to
//!   [Mutex](std::sync::Mutex) or [RwLock](std::sync::RwLock).
//! - Mutation is expensive. A full copy is made every time you create
//!   a mutation guard by calling [mutate](CloneReplace::mutate) on
//!   [CloneReplace].
//! - The memory overhead can be large. For scenarios with very long
//!   running readers, you may end up with many copies of your data
//!   being stored simultaneously.
//! - In the presence of multiple writers, it's entirely possible to
//!   lose updates, because multiple writers are not prevented from
//!   existing at the same time. Whatever state is set will always be
//!   internally consistent, but you give up guaranteed external
//!   consistency.

use arc_swap::ArcSwap;
use core::ops::{Deref, DerefMut, Drop};
use std::fmt::{Display, Formatter, Result};
use std::sync::Arc;

/// A shareable store for data which provides owned references.
///
/// A `CloneReplace` stores a reference version of an enclosed data
/// structure.  An owned snapshot of the current reference version can
/// be retrieved by calling [access](CloneReplace::access) on
/// [CloneReplace], which will preserve the reference version at that
/// moment until it is dropped. A mutatable snapshot of the current
/// reference version can be retrieved by calling
/// [mutate](CloneReplace::mutate) on [CloneReplace], and when this
/// goes out of scope, the reference version at that moment will be
/// replaced by the mutated one.
#[derive(Debug)]
pub struct CloneReplace<T> {
    data: Arc<ArcSwap<T>>,
}

impl<T> Clone for CloneReplace<T> {
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
        }
    }
}

impl<T: Default> Default for CloneReplace<T> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T> CloneReplace<T> {
    /// Create a new [CloneReplace].
    ///
    /// Example:
    /// ```rust
    /// use clone_replace::CloneReplace;
    ///
    /// struct Foo {
    ///    a: i32
    /// }
    ///
    /// let cr = CloneReplace::new(Foo { a: 0 });
    /// ```
    pub fn new(data: T) -> Self {
        Self {
            data: Arc::new(ArcSwap::new(Arc::new(data))),
        }
    }

    /// Retrieve a snapshot of the current reference version of the data.
    ///
    /// The return value is owned, and the snapshot taken will remain
    /// unchanging until it goes out of scope. The existence of the
    /// snapshot will not prevent the reference version from evolving,
    /// so holding snapshots must be carefully considered, as it can
    /// lead to memory pressure.
    ///
    /// Example:
    /// ```rust
    /// use clone_replace::CloneReplace;
    ///
    /// let c = CloneReplace::new(1);
    /// let v = c.access();
    /// assert_eq!(*v, 1);
    /// ```
    pub fn access(&self) -> Arc<T> {
        self.data.load_full()
    }

    fn set_value(&self, value: T) {
        self.data.swap(Arc::new(value));
    }
}

impl<T: Clone> CloneReplace<T> {
    /// Create a mutable replacement for the reference data.
    ///
    /// A copy of the current reference version of the data is
    /// created. The [MutateGuard] provides mutable references to that
    /// data. When the guard goes out of scope the reference version
    /// will be overwritten with the updated version.
    ///
    /// Multiple guards can exist simultaneously, and there is no
    /// attempt to prevent loss of data from stale updates.  An
    /// internally consistent version of the data, as produced by a
    /// single mutate call, will always exist, but not every mutate
    /// call will end up being reflected in a reference version of the
    /// data. This is a significantly weaker consistency guarantee
    /// than a [Mutex](std::sync::Mutex) provides, for example.
    ///
    /// Example:
    /// ```rust
    /// use clone_replace::CloneReplace;
    ///
    /// let c = CloneReplace::new(1);
    /// let mut v = c.mutate();
    /// *v = 2;
    /// drop(v);
    /// assert_eq!(*c.access(), 2);
    /// ```
    pub fn mutate(&self) -> MutateGuard<T> {
        let inner = &*self.data.load_full();
        MutateGuard {
            origin: self.clone(),
            data: Some(inner.clone()),
        }
    }
}

/// A handle to a writeable version of the data.
///
/// This structure is created by the [mutate](CloneReplace::mutate)
/// method on [CloneReplace]. The data held by the guard can be
/// accessed via its [Deref] and [DerefMut] implementations.
///
/// When the guard is dropped, the contents will be written back to
/// become the new reference version of the data. Any intermediate
/// writes that occurred between the mutate guard being constructed
/// and the writeback will be discarded.
pub struct MutateGuard<T> {
    origin: CloneReplace<T>,
    data: Option<T>,
}

impl<T> MutateGuard<T> {
    /// Discard the changes made in this mutation session.
    ///
    /// The changed data will not be written back to its origin.  If
    /// you do not call discard, the changes will always be committed
    /// when the guard goes out of scope.
    ///
    /// Example:
    /// ```rust
    /// use clone_replace::CloneReplace;
    ///
    /// let c = CloneReplace::new(1);
    /// let mut v = c.mutate();
    /// *v = 2;
    /// v.discard();
    /// assert_eq!(*c.access(), 1);
    /// ```
    pub fn discard(mut self) {
        self.data = None;
    }
}

impl<T> Deref for MutateGuard<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        // Does not panic: the Option is only None after drop()
        // returns, or if discard() has been called, which also drops
        // the value immediately. There's no way to get here so long
        // as we don't call deref() from those two methods.
        self.data.as_ref().unwrap()
    }
}

impl<T> DerefMut for MutateGuard<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        // Does not panic: the Option is only None after drop()
        // returns, or if discard() has been called, which also drops
        // the value immediately. There's no way to get here so long
        // as we don't call deref_mut() from those two methods.
        self.data.as_mut().unwrap()
    }
}

impl<T: Display> Display for MutateGuard<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        // Does not panic: the Option is only None after drop()
        // returns, or if discard() has been called, which also drops
        // the value immediately. There's no way to get here so long
        // as we don't call fmt() from those two methods.
        self.data.as_ref().unwrap().fmt(f)
    }
}

impl<T> Drop for MutateGuard<T> {
    fn drop(&mut self) {
        if let Some(data) = self.data.take() {
            self.origin.set_value(data);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::CloneReplace;
    use std::fmt::{Display, Formatter};

    #[derive(Clone, Debug)]
    struct Foo {
        pub a: i32,
    }

    impl Display for Foo {
        fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
            self.a.fmt(f)
        }
    }

    #[test]
    fn test_basic() {
        let cr = CloneReplace::new(Foo { a: 0 });

        let v1 = cr.access();
        assert_eq!(v1.a, 0);
        {
            let mut m = cr.mutate();
            assert_eq!(m.a, 0);
            m.a = 2;
            assert_eq!(m.a, 2);
            let v2 = cr.access();
            assert_eq!(v1.a, 0);
            assert_eq!(v2.a, 0);
        }
        let v3 = cr.access();
        assert_eq!(v3.a, 2);
        assert_eq!(v1.a, 0);
    }

    #[test]
    fn test_discard() {
        let cr = CloneReplace::new(Foo { a: 5 });

        let v1 = cr.access();
        assert_eq!(v1.a, 5);
        {
            let mut m = cr.mutate();
            assert_eq!(m.a, 5);
            m.a = 1;
            assert_eq!(m.a, 1);
            let v2 = cr.access();
            assert_eq!(v1.a, 5);
            assert_eq!(v2.a, 5);
            m.discard();
        }
        let v3 = cr.access();
        assert_eq!(v3.a, 5);
        assert_eq!(v1.a, 5);
    }

    #[test]
    fn test_display() {
        let cr = CloneReplace::new(Foo { a: 3 });

        let v1 = cr.access();
        assert_eq!(v1.to_string(), "3");
        {
            let mut m = cr.mutate();
            assert_eq!(m.to_string(), "3");
            m.a = 2;
            assert_eq!(m.to_string(), "2");
            let v2 = cr.access();
            assert_eq!(v1.to_string(), "3");
            assert_eq!(v2.to_string(), "3");
        }
        let v3 = cr.access();
        assert_eq!(v3.to_string(), "2");
        assert_eq!(v1.to_string(), "3");
    }

    #[test]
    fn test_multiple_writers() {
        let cr = CloneReplace::new(Foo { a: 4 });

        let v1 = cr.access();
        assert_eq!(v1.a, 4);
        {
            let mut m1 = cr.mutate();
            let mut m2 = cr.mutate();

            assert_eq!(m1.a, 4);
            m1.a = 1;
            assert_eq!(m1.a, 1);

            let v2 = cr.access();
            assert_eq!(v1.a, 4);
            assert_eq!(v2.a, 4);

            assert_eq!(m2.a, 4);
            m2.a = 5;
            assert_eq!(m2.a, 5);
            let v3 = cr.access();
            assert_eq!(v1.a, 4);
            assert_eq!(v2.a, 4);
            assert_eq!(v3.a, 4);
            assert_eq!(m1.a, 1);
        }
        let v4 = cr.access();
        assert_eq!(v4.a, 1);
        assert_eq!(v1.a, 4);
    }
}