1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
use crate::Interval;
use crate::SyncJob;
use crate::{
    timeprovider::{ChronoTimeProvider, TimeProvider},
    Job,
};
use std::default::Default;
use std::marker::PhantomData;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::thread;
use std::time::Duration;
/// Synchronous job scheduler
///
/// ### Usage examples
/// ```rust
/// // Scheduler, trait for .seconds(), .minutes(), etc., and trait with job scheduling methods
/// use clokwerk::{Scheduler, TimeUnits, Job};
/// // Import week days and WeekDay
/// use clokwerk::Interval::*;
/// use std::thread;
/// use std::time::Duration;
///
/// // Create a new scheduler
/// let mut scheduler = Scheduler::new();
/// // or a scheduler with a given timezone
/// let mut scheduler = Scheduler::with_tz(chrono::Utc);
/// // Add some tasks to it
/// scheduler
///     .every(10.minutes())
///         .plus(30.seconds())
///     .run(|| println!("Periodic task"));
/// scheduler
///     .every(1.day())
///         .at("3:20 pm")
///     .run(|| println!("Daily task"));
/// scheduler
///     .every(Wednesday)
///         .at("14:20:17")
///     .run(|| println!("Weekly task"));
/// scheduler
///     .every(Tuesday)
///         .at("14:20:17")
///     .and_every(Thursday)
///         .at("15:00")
///     .run(|| println!("Biweekly task"));
/// scheduler
///     .every(Weekday)
///     .run(|| println!("Every weekday at midnight"));
/// scheduler
///     .every(1.day())
///         .at("3:20 pm")
///     .run(|| println!("I only run once")).once();
/// scheduler
///     .every(Weekday)
///         .at("12:00").count(10)
///     .run(|| println!("Countdown"));
/// scheduler
///     .every(1.day())
///         .at("10:00 am")
///         .repeating_every(30.minutes())
///             .times(6)
///     .run(|| println!("I run every half hour from 10 AM to 1 PM inclusive."));
/// scheduler
///     .every(1.day())
///         .at_time(chrono::NaiveTime::from_hms(13, 12, 14))
///     .run(|| println!("You can also pass chrono::NaiveTimes to `at_time`."));
///
/// // Manually run the scheduler in an event loop
/// for _ in 1..10 {
///     scheduler.run_pending();
///     thread::sleep(Duration::from_millis(10));
///     # break;
/// }
///
/// // Or run it in a background thread
/// let thread_handle = scheduler.watch_thread(Duration::from_millis(100));
/// // The scheduler stops when `thread_handle` is dropped, or `stop` is called
/// thread_handle.stop();
/// ```
#[derive(Debug)]
pub struct Scheduler<Tz = chrono::Local, Tp = ChronoTimeProvider>
where
    Tz: chrono::TimeZone,
    Tp: TimeProvider,
{
    jobs: Vec<SyncJob<Tz, Tp>>,
    tz: Tz,
    _tp: PhantomData<Tp>,
}

impl Default for Scheduler {
    fn default() -> Self {
        Scheduler::<chrono::Local> {
            jobs: vec![],
            tz: chrono::Local,
            _tp: PhantomData,
        }
    }
}

impl Scheduler {
    /// Create a new scheduler. Dates and times will be interpretted using the local timezone
    pub fn new() -> Self {
        Scheduler::default()
    }

    /// Create a new scheduler. Dates and times will be interpretted using the specified timezone.
    pub fn with_tz<Tz: chrono::TimeZone>(tz: Tz) -> Scheduler<Tz> {
        Scheduler {
            jobs: vec![],
            tz,
            _tp: PhantomData,
        }
    }

    /// Create a new scheduler. Dates and times will be interpretted using the specified timezone.
    /// In addition, you can provide an alternate time provider. This is mostly useful for writing
    /// tests.
    pub fn with_tz_and_provider<Tz: chrono::TimeZone, Tp: TimeProvider>(
        tz: Tz,
    ) -> Scheduler<Tz, Tp> {
        Scheduler {
            jobs: vec![],
            tz,
            _tp: PhantomData,
        }
    }
}

impl<Tz, Tp> Scheduler<Tz, Tp>
where
    Tz: chrono::TimeZone + Sync + Send,
    Tp: TimeProvider,
{
    /// Add a new job to the scheduler to be run on the given interval
    /// ```rust
    /// # use clokwerk::*;
    /// # use clokwerk::Interval::*;
    /// let mut scheduler = Scheduler::new();
    /// scheduler.every(10.minutes()).plus(30.seconds()).run(|| println!("Periodic task"));
    /// scheduler.every(1.day()).at("3:20 pm").run(|| println!("Daily task"));
    /// scheduler.every(Wednesday).at("14:20:17").run(|| println!("Weekly task"));
    /// scheduler.every(Weekday).run(|| println!("Every weekday at midnight"));
    /// ```
    pub fn every(&mut self, ival: Interval) -> &mut SyncJob<Tz, Tp> {
        let job = SyncJob::<Tz, Tp>::new(ival, self.tz.clone());
        self.jobs.push(job);
        let last_index = self.jobs.len() - 1;
        &mut self.jobs[last_index]
    }

    /// Run all jobs that should run at this time.
    ///
    /// This method blocks while jobs are being run. If a job takes a long time, it may prevent
    /// other tasks from running as scheduled. If you have a long-running task, you might consider
    /// having the job move the work into another thread so that it can return promptly.
    /// ```rust
    /// # use clokwerk::*;
    /// # use clokwerk::Interval::*;
    /// use std::thread;
    /// use std::time::Duration;
    /// # let mut scheduler = Scheduler::new();
    /// loop {
    ///     scheduler.run_pending();
    ///     thread::sleep(Duration::from_millis(100));
    ///     # break
    /// }
    /// ```
    pub fn run_pending(&mut self) {
        let now = Tp::now(&self.tz);
        for job in &mut self.jobs {
            if job.is_pending(&now) {
                job.execute(&now);
            }
        }
    }
}

impl<Tz> Scheduler<Tz>
where
    Tz: chrono::TimeZone + Sync + Send + 'static,
    <Tz as chrono::TimeZone>::Offset: Send,
{
    /// Start a background thread to call [Scheduler::run_pending()] repeatedly.
    /// The frequency argument controls how long the thread will sleep between calls
    /// to [Scheduler::run_pending()].
    /// If the returned [ScheduleHandle] is dropped, the resulting thread will end
    /// cleanly when [Scheduler::run_pending()] would have next been called.
    ///
    /// Passing large durations for `frequency` can cause long delays when [ScheduleHandle::stop()]
    /// is called, or the [ScheduleHandle] is dropped, as it waits for the thread to finish sleeping.
    /// This could affect how long it takes for the program to exit.
    ///
    /// Reasonable values for `frequency` would be between 100 ms and 10 seconds.
    /// If in doubt, choose a smaller value.
    #[must_use = "The scheduler is halted when the returned handle is dropped"]
    pub fn watch_thread(self, frequency: Duration) -> ScheduleHandle {
        let stop = Arc::new(AtomicBool::new(false));
        let my_stop = stop.clone();
        let mut me = self;
        let handle = thread::spawn(move || {
            while !stop.load(Ordering::SeqCst) {
                me.run_pending();
                thread::sleep(frequency);
            }
        });
        ScheduleHandle {
            stop: my_stop,
            thread_handle: Some(handle),
        }
    }
}

/// Guard object for the scheduler background thread. The thread is terminated if this object
/// is dropped, or [ScheduleHandle::stop()] is called
pub struct ScheduleHandle {
    stop: Arc<AtomicBool>,
    thread_handle: Option<thread::JoinHandle<()>>,
}
impl ScheduleHandle {
    /// Halt the scheduler background thread
    pub fn stop(self) {}
}

impl Drop for ScheduleHandle {
    fn drop(&mut self) {
        self.stop.store(true, Ordering::SeqCst);
        let handle = self.thread_handle.take();
        handle.unwrap().join().ok();
    }
}

#[cfg(test)]
mod tests {
    use super::{Job, Scheduler, TimeProvider};
    use crate::intervals::*;
    use std::sync::{atomic::AtomicU32, atomic::Ordering, Arc};

    macro_rules! make_time_provider {
        ($name:ident : $($time:literal),+) => {
            #[derive(Debug)]
            struct $name {}
            static TIMES_TIME_REQUESTED: once_cell::sync::Lazy<AtomicU32> = once_cell::sync::Lazy::new(|| AtomicU32::new(0));
            impl TimeProvider for $name {
                fn now<Tz>(tz: &Tz) -> chrono::DateTime<Tz>
                where
                    Tz: chrono::TimeZone + Sync + Send,
                    {
                        let times = [$(chrono::DateTime::parse_from_rfc3339($time).unwrap()),+];
                        let idx = TIMES_TIME_REQUESTED.fetch_add(1, Ordering::SeqCst) as usize;
                        times[idx].with_timezone(&tz)
                    }
            }
        };
    }

    #[test]
    fn test_every_plus() {
        make_time_provider!(FakeTimeProvider :
            "2019-10-22T12:40:00Z",
            "2019-10-22T12:40:00Z",
            "2019-10-22T12:50:20Z",
            "2019-10-22T12:50:30Z"
        );
        let mut scheduler =
            Scheduler::with_tz_and_provider::<chrono::Utc, FakeTimeProvider>(chrono::Utc);
        let times_called = Arc::new(AtomicU32::new(0));
        {
            let times_called = times_called.clone();
            scheduler
                .every(10.minutes())
                .plus(5.seconds())
                .run(move || {
                    times_called.fetch_add(1, Ordering::SeqCst);
                });
        }
        assert_eq!(1, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(0, times_called.load(Ordering::SeqCst));
        assert_eq!(2, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(1, times_called.load(Ordering::SeqCst));
        assert_eq!(3, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(1, times_called.load(Ordering::SeqCst));
        assert_eq!(4, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
    }

    #[test]
    fn test_every_at() {
        make_time_provider!(FakeTimeProvider:
            "2019-10-22T12:40:00Z",
            "2019-10-22T12:40:10Z",
            "2019-10-25T12:50:20Z",
            "2019-10-25T15:23:30Z",
            "2019-10-26T15:50:30Z"
        );
        let mut scheduler =
            Scheduler::with_tz_and_provider::<chrono::Utc, FakeTimeProvider>(chrono::Utc);
        let times_called = Arc::new(AtomicU32::new(0));
        {
            let times_called = times_called.clone();
            scheduler.every(3.days()).at("15:23").run(move || {
                times_called.fetch_add(1, Ordering::SeqCst);
            });
        }
        assert_eq!(1, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(0, times_called.load(Ordering::SeqCst));
        assert_eq!(2, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(1, times_called.load(Ordering::SeqCst));
        assert_eq!(3, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(1, times_called.load(Ordering::SeqCst));
        assert_eq!(4, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
    }

    #[test]
    fn test_every_and_every() {
        make_time_provider!(FakeTimeProvider:
            "2019-10-22T12:40:01Z",
            "2019-10-22T12:40:01Z",
            "2019-10-22T12:40:02Z",
            "2019-10-22T12:40:03Z",
            "2019-10-22T12:40:04Z",
            "2019-10-22T12:40:05Z",
            "2019-10-22T12:40:06Z"
        );
        let mut scheduler =
            Scheduler::with_tz_and_provider::<chrono::Utc, FakeTimeProvider>(chrono::Utc);
        let times_called = Arc::new(AtomicU32::new(0));
        {
            let times_called = times_called.clone();
            scheduler
                .every(5.seconds())
                .and_every(2.seconds())
                .run(move || {
                    times_called.fetch_add(1, Ordering::SeqCst);
                });
        }
        assert_eq!(1, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(2, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(0, times_called.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(3, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(1, times_called.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(4, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(1, times_called.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(5, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(2, times_called.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(6, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(3, times_called.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(7, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(4, times_called.load(Ordering::SeqCst));
    }

    #[test]
    fn test_once() {
        make_time_provider!(FakeTimeProvider:
            "2019-10-22T12:40:01Z",
            "2019-10-22T12:40:01Z",
            "2019-10-22T12:40:02Z",
            "2019-10-22T12:40:03Z"
        );
        let mut scheduler =
            Scheduler::with_tz_and_provider::<chrono::Utc, FakeTimeProvider>(chrono::Utc);
        let times_called = Arc::new(AtomicU32::new(0));
        {
            let times_called = times_called.clone();
            scheduler.every(1.seconds()).once().run(move || {
                times_called.fetch_add(1, Ordering::SeqCst);
            });
        }
        assert_eq!(1, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(2, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(0, times_called.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(3, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(1, times_called.load(Ordering::SeqCst));
        scheduler.run_pending();
        assert_eq!(4, TIMES_TIME_REQUESTED.load(Ordering::SeqCst));
        assert_eq!(1, times_called.load(Ordering::SeqCst));
    }
}