1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use std::cmp::min;
use std::iter::IntoIterator;

use crate::bounds::*;
use crate::constants::*;
use crate::storage::*;

/// Represents a *clock*.
///
/// Note that `0` is the designated *zero clock* whose value is always `0`.
pub type Clock = usize;

/// A *clock constraint* bounding the difference of two clocks.
pub struct Constraint<B: Bound> {
    pub(crate) left: Clock,
    pub(crate) right: Clock,
    pub(crate) bound: B,
}

impl<B: Bound> Constraint<B> {
    /// Returns the left-hand side of the difference.
    pub fn left(&self) -> Clock {
        self.left
    }

    /// Returns the right-hand side of the difference.
    pub fn right(&self) -> Clock {
        self.right
    }

    /// Returns the bound.
    pub fn bound(&self) -> &B {
        &self.bound
    }

    /// Constructs a new constraint of the form `clock ≤ constant`.
    pub fn new_le(clock: Clock, constant: B::Constant) -> Self {
        Constraint {
            left: clock,
            right: 0,
            bound: B::new_le(constant),
        }
    }

    /// Constructs a new constraint of the form `clock < constant`.
    pub fn new_lt(clock: Clock, constant: B::Constant) -> Self {
        Constraint {
            left: clock,
            right: 0,
            bound: B::new_lt(constant),
        }
    }

    /// Constructs a new constraint of the form `clock ≥ constant`.
    ///
    /// Panics in case the constant cannot be negated without an overflow.
    pub fn new_ge(clock: Clock, constant: B::Constant) -> Self {
        Constraint {
            left: 0,
            right: clock,
            bound: B::new_le(
                constant
                    .checked_neg()
                    .expect("overflow while negating constant"),
            ),
        }
    }

    /// Constructs a new constraint of the form `clock > constant`.
    ///
    /// Panics in case the constant cannot be negated without an overflow.
    pub fn new_gt(clock: Clock, constant: B::Constant) -> Self {
        Constraint {
            left: 0,
            right: clock,
            bound: B::new_lt(
                constant
                    .checked_neg()
                    .expect("overflow while negating constant"),
            ),
        }
    }
    /// Constructs a new constraint of the form `left - right ≤ constant`.
    pub fn new_diff_le(left: Clock, right: Clock, constant: B::Constant) -> Self {
        Constraint {
            left,
            right,
            bound: B::new_le(constant),
        }
    }

    /// Constructs a new constraint of the form `left - right < constant`.
    pub fn new_diff_lt(left: Clock, right: Clock, constant: B::Constant) -> Self {
        Constraint {
            left,
            right,
            bound: B::new_lt(constant),
        }
    }

    /// Constructs a new constraint of the form `left - right ≥ constant`.
    ///
    /// Panics in case the constant cannot be negated without an overflow.
    pub fn new_diff_ge(left: Clock, right: Clock, constant: B::Constant) -> Self {
        Constraint {
            // the swapped order is intentional
            left: right,
            right: left,
            bound: B::new_le(
                constant
                    .checked_neg()
                    .expect("overflow while negating constant"),
            ),
        }
    }

    /// Constructs a new constraint of the form `left - right > constant`.
    ///
    /// Panics in case the constant cannot be negated without an overflow.
    pub fn new_diff_gt(left: Clock, right: Clock, constant: B::Constant) -> Self {
        Constraint {
            // the swapped order is intentional
            left: right,
            right: left,
            bound: B::new_lt(
                constant
                    .checked_neg()
                    .expect("overflow while negating constant"),
            ),
        }
    }
}

/// Represents a zone with a specific *[bound type][Bound]*.
pub trait Zone<B: Bound> {
    /// Constructs a new zone without any constraints besides clocks being positive.
    fn new_unconstrained(num_clocks: usize) -> Self;
    /// Constructs a new zone where all clocks are set to zero.
    fn new_zero(num_clocks: usize) -> Self;

    /// Constructs a new zone from the given iterable of [constraints][Constraint].
    fn with_constraints<U>(num_clocks: usize, constraints: U) -> Self
    where
        U: IntoIterator<Item = Constraint<B>>;

    /// Returns the number of clocks of this zone.
    fn num_clocks(&self) -> usize;

    /// Retrieves the difference bound for `left - right`.
    fn get_bound(&self, left: Clock, right: Clock) -> &B;

    /// Checks whether the zone is empty.
    fn is_empty(&self) -> bool;

    /// Adds a [constraint][Constraint] to the zone.
    fn add_constraint(&mut self, constraint: Constraint<B>);
    /// Adds all [constraints][Constraint] from the given iterable to the zone.
    fn add_constraints<U>(&mut self, constraints: U)
    where
        U: IntoIterator<Item = Constraint<B>>;

    /// Intersects two zones.
    fn intersect(&mut self, other: &Self);

    /// Computes the *future* of the zone by removing all upper bounds.
    ///
    /// This operation is sometimes also known as *up*.
    fn future(&mut self);
    /// Computes the *past* of the zone by removing all lower bounds.
    ///
    /// This operation is sometimes also known as *down*.
    fn past(&mut self);

    /// Resets the given clock to the specified constant.
    fn reset(&mut self, clock: Clock, value: B::Constant);

    /// Checks whether the value of the given clock is unbounded.
    fn is_unbounded(&self, clock: Clock) -> bool;

    /// Returns the upper bound for the value of the given clock.
    fn get_upper_bound(&self, clock: Clock) -> Option<B::Constant>;
    /// Returns the lower bound for the value of the given clock.
    fn get_lower_bound(&self, clock: Clock) -> Option<B::Constant>;

    /// Checks whether the given constraint is satisfied by the zone.
    fn is_satisfied(&self, constraint: Constraint<B>) -> bool;

    /// Checks whether the zone includes the other zone.
    fn includes(&self, other: &Self) -> bool;

    /// Creates a resized copy of the zone by adding or removing clocks.
    ///
    /// Added clocks will be unconstrained.
    fn resize(&self, num_clocks: usize) -> Self;
}

/// An implementation of [Zone] as *difference bound matrix*.
///
/// Uses [LinearLayout] as the default [storage layout][Layout].
#[derive(Eq, PartialEq, Hash, Clone, Debug)]
pub struct DBM<B: Bound, L: Layout<B> = LinearLayout<B>> {
    /// The dimension of the matrix.
    dimension: usize,
    /// The internal representation using the given layout.
    layout: L,

    _phantom_bound: std::marker::PhantomData<B>,
}

impl<B: Bound, L: Layout<B>> DBM<B, L> {
    fn new(num_clocks: usize, default: B) -> Self {
        let dimension = num_clocks + 1;
        let mut layout = L::new(num_clocks, default);
        layout.set(0, 0, B::le_zero());
        for clock in 1..dimension {
            layout.set(0, clock, B::le_zero());
            layout.set(clock, clock, B::le_zero());
        }
        DBM {
            dimension,
            layout,
            _phantom_bound: std::marker::PhantomData,
        }
    }

    #[inline(always)]
    fn canonicalize_touched(&mut self, touched: usize) {
        for left in 0..self.dimension {
            for right in 0..self.dimension {
                let bound = self
                    .layout
                    .get(left, touched)
                    .add(self.layout.get(touched, right))
                    .unwrap();
                if bound.is_tighter_than(self.layout.get(left, right)) {
                    self.layout.set(left, right, bound);
                }
            }
        }
    }

    fn canonicalize(&mut self) {
        for touched in 0..self.dimension {
            self.canonicalize_touched(touched);
        }
    }
}

impl<B: Bound, L: Layout<B>> Zone<B> for DBM<B, L> {
    fn new_unconstrained(num_clocks: usize) -> Self {
        DBM::new(num_clocks, B::unbounded())
    }
    fn new_zero(num_clocks: usize) -> Self {
        DBM::new(num_clocks, B::le_zero())
    }

    fn with_constraints<U>(num_clocks: usize, constraints: U) -> Self
    where
        U: IntoIterator<Item = Constraint<B>>,
    {
        let mut zone = Self::new_unconstrained(num_clocks);
        for constraint in constraints {
            zone.layout
                .set(constraint.left, constraint.right, constraint.bound.clone());
        }
        zone.canonicalize();
        zone
    }

    #[inline(always)]
    fn num_clocks(&self) -> usize {
        self.dimension - 1
    }

    #[inline(always)]
    fn get_bound(&self, left: usize, right: usize) -> &B {
        self.layout.get(left, right)
    }

    #[inline(always)]
    fn is_empty(&self) -> bool {
        self.layout.get(0, 0).is_tighter_than(&B::le_zero())
    }

    fn add_constraint(&mut self, constraint: Constraint<B>) {
        let bound = self.layout.get(constraint.left, constraint.right);
        if constraint.bound.is_tighter_than(&bound) {
            self.layout
                .set(constraint.left, constraint.right, constraint.bound);
            self.canonicalize_touched(constraint.left);
            self.canonicalize_touched(constraint.right);
        }
    }

    fn add_constraints<U>(&mut self, constraints: U)
    where
        U: IntoIterator<Item = Constraint<B>>,
    {
        for constraint in constraints {
            self.add_constraint(constraint);
        }
    }

    fn intersect(&mut self, other: &Self) {
        assert_eq!(self.dimension, other.dimension);
        for left in 0..self.dimension {
            for right in 0..self.dimension {
                if other
                    .layout
                    .get(left, right)
                    .is_tighter_than(&self.layout.get(left, right))
                {
                    self.layout
                        .set(left, right, other.layout.get(left, right).clone());
                }
            }
        }
        self.canonicalize();
    }

    fn future(&mut self) {
        for left in 1..self.dimension {
            self.layout.set(left, 0, B::unbounded());
        }
    }
    fn past(&mut self) {
        for right in 1..self.dimension {
            self.layout.set(0, right, B::le_zero());
            for row in 1..self.dimension {
                if self
                    .layout
                    .get(row, right)
                    .is_tighter_than(self.layout.get(0, right))
                {
                    self.layout
                        .set(0, right, self.layout.get(row, right).clone());
                }
            }
        }
    }

    fn reset(&mut self, clock: Clock, value: B::Constant) {
        assert!(clock > 0);
        let le_pos_value = B::new_le(value.clone());
        let le_neg_value = B::new_le(value.checked_neg().unwrap());
        for other in 0..self.dimension {
            self.layout.set(
                clock,
                other,
                self.layout.get(0, other).add(&le_pos_value).unwrap(),
            );
            self.layout.set(
                other,
                clock,
                self.layout.get(other, 0).add(&le_neg_value).unwrap(),
            );
        }
    }

    fn is_unbounded(&self, clock: Clock) -> bool {
        self.layout.get(clock, 0).is_unbounded()
    }

    fn get_upper_bound(&self, clock: Clock) -> Option<B::Constant> {
        self.layout.get(clock, 0).constant()
    }

    fn get_lower_bound(&self, clock: Clock) -> Option<B::Constant> {
        Some(self.layout.get(0, clock).constant()?.checked_neg().unwrap())
    }

    fn is_satisfied(&self, constraint: Constraint<B>) -> bool {
        !constraint
            .bound
            .is_tighter_than(self.layout.get(constraint.left, constraint.right))
    }

    fn includes(&self, other: &Self) -> bool {
        for left in 0..self.dimension {
            for right in 0..self.dimension {
                if self
                    .layout
                    .get(left, right)
                    .is_tighter_than(other.layout.get(left, right))
                {
                    return false;
                }
            }
        }
        true
    }

    fn resize(&self, num_clocks: usize) -> Self {
        let mut other = Self::new_unconstrained(num_clocks);
        for left in 0..min(self.dimension, other.dimension) {
            for right in 0..min(self.dimension, other.dimension) {
                let bound = self.layout.get(left, right);
                other.layout.set(left, right, bound.clone());
            }
        }
        other.canonicalize();
        other
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_basics() {
        let mut zone: DBM<i64> = DBM::new_zero(3);
        assert_eq!(zone.get_lower_bound(1), Some(0));
        assert_eq!(zone.get_upper_bound(1), Some(0));
        zone.future();
        assert_eq!(zone.get_lower_bound(1), Some(0));
        assert_eq!(zone.get_upper_bound(1), None);
        assert!(zone.is_unbounded(1));
        let mut copy = zone.clone();
        zone.add_constraint(Constraint::new_lt(1, 4));
        assert!(!zone.is_unbounded(1));
        assert_eq!(zone.get_lower_bound(1), Some(0));
        assert_eq!(zone.get_upper_bound(1), Some(4));
        assert!(copy.includes(&zone));
        copy.add_constraint(Constraint::new_le(1, 4));
        assert!(copy.includes(&zone));
        copy.add_constraint(Constraint::new_lt(1, 3));
        assert!(!copy.includes(&zone));
        assert!(zone.includes(&copy));
        zone.intersect(&copy);
        assert!(zone.includes(&copy));
        assert!(copy.includes(&zone));
        copy.add_constraint(Constraint::new_diff_lt(1, 2, 4));
        copy.add_constraint(Constraint::new_diff_gt(1, 2, 5));
        assert!(copy.is_empty());
    }
}