1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
use crate::utils::span_lint;
use rustc::hir;
use rustc::lint::*;
use syntax::codemap::Span;

/// **What it does:** Checks for plain integer arithmetic.
///
/// **Why is this bad?** This is only checked against overflow in debug builds.
/// In some applications one wants explicitly checked, wrapping or saturating
/// arithmetic.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// a + 1
/// ```
declare_clippy_lint! {
    pub INTEGER_ARITHMETIC,
    restriction,
    "any integer arithmetic statement"
}

/// **What it does:** Checks for float arithmetic.
///
/// **Why is this bad?** For some embedded systems or kernel development, it
/// can be useful to rule out floating-point numbers.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// a + 1.0
/// ```
declare_clippy_lint! {
    pub FLOAT_ARITHMETIC,
    restriction,
    "any floating-point arithmetic statement"
}

#[derive(Copy, Clone, Default)]
pub struct Arithmetic {
    span: Option<Span>,
}

impl LintPass for Arithmetic {
    fn get_lints(&self) -> LintArray {
        lint_array!(INTEGER_ARITHMETIC, FLOAT_ARITHMETIC)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Arithmetic {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
        if self.span.is_some() {
            return;
        }
        match expr.node {
            hir::ExprBinary(ref op, ref l, ref r) => {
                match op.node {
                    hir::BiAnd
                    | hir::BiOr
                    | hir::BiBitAnd
                    | hir::BiBitOr
                    | hir::BiBitXor
                    | hir::BiShl
                    | hir::BiShr
                    | hir::BiEq
                    | hir::BiLt
                    | hir::BiLe
                    | hir::BiNe
                    | hir::BiGe
                    | hir::BiGt => return,
                    _ => (),
                }
                let (l_ty, r_ty) = (cx.tables.expr_ty(l), cx.tables.expr_ty(r));
                if l_ty.is_integral() && r_ty.is_integral() {
                    span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
                    self.span = Some(expr.span);
                } else if l_ty.is_floating_point() && r_ty.is_floating_point() {
                    span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
                    self.span = Some(expr.span);
                }
            },
            hir::ExprUnary(hir::UnOp::UnNeg, ref arg) => {
                let ty = cx.tables.expr_ty(arg);
                if ty.is_integral() {
                    span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
                    self.span = Some(expr.span);
                } else if ty.is_floating_point() {
                    span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
                    self.span = Some(expr.span);
                }
            },
            _ => (),
        }
    }

    fn check_expr_post(&mut self, _: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
        if Some(expr.span) == self.span {
            self.span = None;
        }
    }
}