1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
//! This module contains functions for retrieve the original AST from lowered `hir`.

#![deny(missing_docs_in_private_items)]

use rustc::hir;
use rustc::lint::LateContext;
use syntax::ast;
use utils::{is_expn_of, match_path, match_def_path, resolve_node, paths};

/// Convert a hir binary operator to the corresponding `ast` type.
pub fn binop(op: hir::BinOp_) -> ast::BinOpKind {
    match op {
        hir::BiEq => ast::BinOpKind::Eq,
        hir::BiGe => ast::BinOpKind::Ge,
        hir::BiGt => ast::BinOpKind::Gt,
        hir::BiLe => ast::BinOpKind::Le,
        hir::BiLt => ast::BinOpKind::Lt,
        hir::BiNe => ast::BinOpKind::Ne,
        hir::BiOr => ast::BinOpKind::Or,
        hir::BiAdd => ast::BinOpKind::Add,
        hir::BiAnd => ast::BinOpKind::And,
        hir::BiBitAnd => ast::BinOpKind::BitAnd,
        hir::BiBitOr => ast::BinOpKind::BitOr,
        hir::BiBitXor => ast::BinOpKind::BitXor,
        hir::BiDiv => ast::BinOpKind::Div,
        hir::BiMul => ast::BinOpKind::Mul,
        hir::BiRem => ast::BinOpKind::Rem,
        hir::BiShl => ast::BinOpKind::Shl,
        hir::BiShr => ast::BinOpKind::Shr,
        hir::BiSub => ast::BinOpKind::Sub,
    }
}

/// Represent a range akin to `ast::ExprKind::Range`.
#[derive(Debug, Copy, Clone)]
pub struct Range<'a> {
    /// The lower bound of the range, or `None` for ranges such as `..X`.
    pub start: Option<&'a hir::Expr>,
    /// The upper bound of the range, or `None` for ranges such as `X..`.
    pub end: Option<&'a hir::Expr>,
    /// Whether the interval is open or closed.
    pub limits: ast::RangeLimits,
}

/// Higher a `hir` range to something similar to `ast::ExprKind::Range`.
pub fn range(expr: &hir::Expr) -> Option<Range> {
    /// Find the field named `name` in the field. Always return `Some` for convenience.
    fn get_field<'a>(name: &str, fields: &'a [hir::Field]) -> Option<&'a hir::Expr> {
        let expr = &fields.iter()
            .find(|field| field.name.node == name)
            .unwrap_or_else(|| panic!("missing {} field for range", name))
            .expr;

        Some(expr)
    }

    // The range syntax is expanded to literal paths starting with `core` or `std` depending on
    // `#[no_std]`. Testing both instead of resolving the paths.

    match expr.node {
        hir::ExprPath(ref path) => {
            if match_path(path, &paths::RANGE_FULL_STD) || match_path(path, &paths::RANGE_FULL) {
                Some(Range {
                    start: None,
                    end: None,
                    limits: ast::RangeLimits::HalfOpen,
                })
            } else {
                None
            }
        },
        hir::ExprStruct(ref path, ref fields, None) => {
            if match_path(path, &paths::RANGE_FROM_STD) || match_path(path, &paths::RANGE_FROM) {
                Some(Range {
                    start: get_field("start", fields),
                    end: None,
                    limits: ast::RangeLimits::HalfOpen,
                })
            } else if match_path(path, &paths::RANGE_INCLUSIVE_NON_EMPTY_STD) ||
                      match_path(path, &paths::RANGE_INCLUSIVE_NON_EMPTY) {
                Some(Range {
                    start: get_field("start", fields),
                    end: get_field("end", fields),
                    limits: ast::RangeLimits::Closed,
                })
            } else if match_path(path, &paths::RANGE_STD) || match_path(path, &paths::RANGE) {
                Some(Range {
                    start: get_field("start", fields),
                    end: get_field("end", fields),
                    limits: ast::RangeLimits::HalfOpen,
                })
            } else if match_path(path, &paths::RANGE_TO_INCLUSIVE_STD) || match_path(path, &paths::RANGE_TO_INCLUSIVE) {
                Some(Range {
                    start: None,
                    end: get_field("end", fields),
                    limits: ast::RangeLimits::Closed,
                })
            } else if match_path(path, &paths::RANGE_TO_STD) || match_path(path, &paths::RANGE_TO) {
                Some(Range {
                    start: None,
                    end: get_field("end", fields),
                    limits: ast::RangeLimits::HalfOpen,
                })
            } else {
                None
            }
        },
        _ => None,
    }
}

/// Checks if a `let` decl is from a `for` loop desugaring.
pub fn is_from_for_desugar(decl: &hir::Decl) -> bool {
    if_let_chain! {[
        let hir::DeclLocal(ref loc) = decl.node,
        let Some(ref expr) = loc.init,
        let hir::ExprMatch(_, _, hir::MatchSource::ForLoopDesugar) = expr.node,
    ], {
        return true;
    }}
    false
}

/// Recover the essential nodes of a desugared for loop:
/// `for pat in arg { body }` becomes `(pat, arg, body)`.
pub fn for_loop(expr: &hir::Expr) -> Option<(&hir::Pat, &hir::Expr, &hir::Expr)> {
    if_let_chain! {[
        let hir::ExprMatch(ref iterexpr, ref arms, _) = expr.node,
        let hir::ExprCall(_, ref iterargs) = iterexpr.node,
        iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(),
        let hir::ExprLoop(ref block, _, _) = arms[0].body.node,
        block.stmts.is_empty(),
        let Some(ref loopexpr) = block.expr,
        let hir::ExprMatch(_, ref innerarms, hir::MatchSource::ForLoopDesugar) = loopexpr.node,
        innerarms.len() == 2 && innerarms[0].pats.len() == 1,
        let hir::PatKind::TupleStruct(_, ref somepats, _) = innerarms[0].pats[0].node,
        somepats.len() == 1
    ], {
        return Some((&somepats[0],
                     &iterargs[0],
                     &innerarms[0].body));
    }}
    None
}

/// Represent the pre-expansion arguments of a `vec!` invocation.
pub enum VecArgs<'a> {
    /// `vec![elem; len]`
    Repeat(&'a hir::Expr, &'a hir::Expr),
    /// `vec![a, b, c]`
    Vec(&'a [hir::Expr]),
}

/// Returns the arguments of the `vec!` macro if this expression was expanded from `vec!`.
pub fn vec_macro<'e>(cx: &LateContext, expr: &'e hir::Expr) -> Option<VecArgs<'e>> {
    if_let_chain!{[
        let hir::ExprCall(ref fun, ref args) = expr.node,
        let hir::ExprPath(ref path) = fun.node,
        is_expn_of(cx, fun.span, "vec").is_some(),
    ], {
        let fun_def = resolve_node(cx, path, fun.id);
        return if match_def_path(cx, fun_def.def_id(), &paths::VEC_FROM_ELEM) && args.len() == 2 {
            // `vec![elem; size]` case
            Some(VecArgs::Repeat(&args[0], &args[1]))
        }
        else if match_def_path(cx, fun_def.def_id(), &paths::SLICE_INTO_VEC) && args.len() == 1 {
            // `vec![a, b, c]` case
            if_let_chain!{[
                let hir::ExprBox(ref boxed) = args[0].node,
                let hir::ExprArray(ref args) = boxed.node
            ], {
                return Some(VecArgs::Vec(&*args));
            }}

            None
        }
        else {
            None
        };
    }}

    None
}