1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
use reexport::*;
use rustc::hir::*;
use rustc::hir::intravisit::FnKind;
use rustc::lint::*;
use rustc::middle::const_val::ConstVal;
use rustc::ty;
use rustc_const_eval::EvalHint::ExprTypeChecked;
use rustc_const_eval::eval_const_expr_partial;
use rustc_const_math::ConstFloat;
use syntax::codemap::{Span, Spanned, ExpnFormat};
use utils::{get_item_name, get_parent_expr, implements_trait, in_macro, is_integer_literal, match_path, snippet,
            span_lint, span_lint_and_then, walk_ptrs_ty, last_path_segment, iter_input_pats};
use utils::sugg::Sugg;

/// **What it does:** Checks for function arguments and let bindings denoted as `ref`.
///
/// **Why is this bad?** The `ref` declaration makes the function take an owned
/// value, but turns the argument into a reference (which means that the value
/// is destroyed when exiting the function). This adds not much value: either
/// take a reference type, or take an owned value and create references in the
/// body.
///
/// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The
/// type of `x` is more obvious with the former.
///
/// **Known problems:** If the argument is dereferenced within the function,
/// removing the `ref` will lead to errors. This can be fixed by removing the
/// dereferences, e.g. changing `*x` to `x` within the function.
///
/// **Example:**
/// ```rust
/// fn foo(ref x: u8) -> bool { .. }
/// ```
declare_lint! {
    pub TOPLEVEL_REF_ARG,
    Warn,
    "an entire binding declared as `ref`, in a function argument or a `let` statement"
}

/// **What it does:** Checks for comparisons to NaN.
///
/// **Why is this bad?** NaN does not compare meaningfully to anything – not
/// even itself – so those comparisons are simply wrong.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x == NAN
/// ```
declare_lint! {
    pub CMP_NAN,
    Deny,
    "comparisons to NAN, which will always return false, probably not intended"
}

/// **What it does:** Checks for (in-)equality comparisons on floating-point
/// values (apart from zero), except in functions called `*eq*` (which probably
/// implement equality for a type involving floats).
///
/// **Why is this bad?** Floating point calculations are usually imprecise, so
/// asking if two values are *exactly* equal is asking for trouble. For a good
/// guide on what to do, see [the floating point
/// guide](http://www.floating-point-gui.de/errors/comparison).
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// y == 1.23f64
/// y != x  // where both are floats
/// ```
declare_lint! {
    pub FLOAT_CMP,
    Warn,
    "using `==` or `!=` on float values instead of comparing difference with an epsilon"
}

/// **What it does:** Checks for conversions to owned values just for the sake
/// of a comparison.
///
/// **Why is this bad?** The comparison can operate on a reference, so creating
/// an owned value effectively throws it away directly afterwards, which is
/// needlessly consuming code and heap space.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.to_owned() == y
/// ```
declare_lint! {
    pub CMP_OWNED,
    Warn,
    "creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`"
}

/// **What it does:** Checks for getting the remainder of a division by one.
///
/// **Why is this bad?** The result can only ever be zero. No one will write
/// such code deliberately, unless trying to win an Underhanded Rust
/// Contest. Even for that contest, it's probably a bad idea. Use something more
/// underhanded.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x % 1
/// ```
declare_lint! {
    pub MODULO_ONE,
    Warn,
    "taking a number modulo 1, which always returns 0"
}

/// **What it does:** Checks for patterns in the form `name @ _`.
///
/// **Why is this bad?** It's almost always more readable to just use direct bindings.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// match v {
///     Some(x) => (),
///     y @ _   => (), // easier written as `y`,
/// }
/// ```
declare_lint! {
    pub REDUNDANT_PATTERN,
    Warn,
    "using `name @ _` in a pattern"
}

/// **What it does:** Checks for the use of bindings with a single leading underscore.
///
/// **Why is this bad?** A single leading underscore is usually used to indicate
/// that a binding will not be used. Using such a binding breaks this
/// expectation.
///
/// **Known problems:** The lint does not work properly with desugaring and
/// macro, it has been allowed in the mean time.
///
/// **Example:**
/// ```rust
/// let _x = 0;
/// let y = _x + 1; // Here we are using `_x`, even though it has a leading underscore.
///                 // We should rename `_x` to `x`
/// ```
declare_lint! {
    pub USED_UNDERSCORE_BINDING,
    Allow,
    "using a binding which is prefixed with an underscore"
}

/// **What it does:** Checks for the use of short circuit boolean conditions as a
/// statement.
///
/// **Why is this bad?** Using a short circuit boolean condition as a statement may
/// hide the fact that the second part is executed or not depending on the outcome of
/// the first part.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// f() && g();  // We should write `if f() { g(); }`.
/// ```
declare_lint! {
    pub SHORT_CIRCUIT_STATEMENT,
    Warn,
    "using a short circuit boolean condition as a statement"
}

#[derive(Copy, Clone)]
pub struct Pass;

impl LintPass for Pass {
    fn get_lints(&self) -> LintArray {
        lint_array!(TOPLEVEL_REF_ARG,
                    CMP_NAN,
                    FLOAT_CMP,
                    CMP_OWNED,
                    MODULO_ONE,
                    REDUNDANT_PATTERN,
                    USED_UNDERSCORE_BINDING,
                    SHORT_CIRCUIT_STATEMENT)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass {
    fn check_fn(
        &mut self,
        cx: &LateContext<'a, 'tcx>,
        k: FnKind<'tcx>,
        decl: &'tcx FnDecl,
        body: &'tcx Body,
        _: Span,
        _: NodeId
    ) {
        if let FnKind::Closure(_) = k {
            // Does not apply to closures
            return;
        }
        for arg in iter_input_pats(decl, body) {
            if let PatKind::Binding(BindByRef(_), _, _, _) = arg.pat.node {
                span_lint(cx,
                          TOPLEVEL_REF_ARG,
                          arg.pat.span,
                          "`ref` directly on a function argument is ignored. Consider using a reference type instead.");
            }
        }
    }

    fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, s: &'tcx Stmt) {
        if_let_chain! {[
            let StmtDecl(ref d, _) = s.node,
            let DeclLocal(ref l) = d.node,
            let PatKind::Binding(BindByRef(mt), _, i, None) = l.pat.node,
            let Some(ref init) = l.init
        ], {
            let init = Sugg::hir(cx, init, "..");
            let (mutopt,initref) = if mt == Mutability::MutMutable {
                ("mut ", init.mut_addr())
            } else {
                ("", init.addr())
            };
            let tyopt = if let Some(ref ty) = l.ty {
                format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "_"))
            } else {
                "".to_owned()
            };
            span_lint_and_then(cx,
                TOPLEVEL_REF_ARG,
                l.pat.span,
                "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead",
                |db| {
                    db.span_suggestion(s.span,
                                       "try",
                                       format!("let {name}{tyopt} = {initref};",
                                               name=snippet(cx, i.span, "_"),
                                               tyopt=tyopt,
                                               initref=initref));
                }
            );
        }};
        if_let_chain! {[
            let StmtSemi(ref expr, _) = s.node,
            let Expr_::ExprBinary(ref binop, ref a, ref b) = expr.node,
            binop.node == BiAnd || binop.node == BiOr,
            let Some(sugg) = Sugg::hir_opt(cx, a),
        ], {
            span_lint_and_then(cx,
                SHORT_CIRCUIT_STATEMENT,
                s.span,
                "boolean short circuit operator in statement may be clearer using an explicit test",
                |db| {
                    let sugg = if binop.node == BiOr { !sugg } else { sugg };
                    db.span_suggestion(s.span, "replace it with",
                                       format!("if {} {{ {}; }}", sugg, &snippet(cx, b.span, "..")));
                });
        }};
    }

    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
            let op = cmp.node;
            if op.is_comparison() {
                if let ExprPath(QPath::Resolved(_, ref path)) = left.node {
                    check_nan(cx, path, expr.span);
                }
                if let ExprPath(QPath::Resolved(_, ref path)) = right.node {
                    check_nan(cx, path, expr.span);
                }
                check_to_owned(cx, left, right, true, cmp.span);
                check_to_owned(cx, right, left, false, cmp.span)
            }
            if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) {
                if is_allowed(cx, left) || is_allowed(cx, right) {
                    return;
                }
                if let Some(name) = get_item_name(cx, expr) {
                    let name = &*name.as_str();
                    if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") ||
                       name.ends_with("_eq") {
                        return;
                    }
                }
                span_lint_and_then(cx, FLOAT_CMP, expr.span, "strict comparison of f32 or f64", |db| {
                    let lhs = Sugg::hir(cx, left, "..");
                    let rhs = Sugg::hir(cx, right, "..");

                    db.span_suggestion(expr.span,
                                       "consider comparing them within some error",
                                       format!("({}).abs() < error", lhs - rhs));
                    db.span_note(expr.span, "std::f32::EPSILON and std::f64::EPSILON are available.");
                });
            } else if op == BiRem && is_integer_literal(right, 1) {
                span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0");
            }
        }
        if in_attributes_expansion(cx, expr) {
            // Don't lint things expanded by #[derive(...)], etc
            return;
        }
        let binding = match expr.node {
            ExprPath(ref qpath) => {
                let binding = last_path_segment(qpath).name.as_str();
                if binding.starts_with('_') &&
                    !binding.starts_with("__") &&
                    &*binding != "_result" && // FIXME: #944
                    is_used(cx, expr) &&
                    // don't lint if the declaration is in a macro
                    non_macro_local(cx, &cx.tcx.tables().qpath_def(qpath, expr.id)) {
                    Some(binding)
                } else {
                    None
                }
            },
            ExprField(_, spanned) => {
                let name = spanned.node.as_str();
                if name.starts_with('_') && !name.starts_with("__") {
                    Some(name)
                } else {
                    None
                }
            },
            _ => None,
        };
        if let Some(binding) = binding {
            span_lint(cx,
                      USED_UNDERSCORE_BINDING,
                      expr.span,
                      &format!("used binding `{}` which is prefixed with an underscore. A leading \
                                underscore signals that a binding will not be used.",
                               binding));
        }
    }

    fn check_pat(&mut self, cx: &LateContext<'a, 'tcx>, pat: &'tcx Pat) {
        if let PatKind::Binding(_, _, ref ident, Some(ref right)) = pat.node {
            if right.node == PatKind::Wild {
                span_lint(cx,
                          REDUNDANT_PATTERN,
                          pat.span,
                          &format!("the `{} @ _` pattern can be written as just `{}`", ident.node, ident.node));
            }
        }
    }
}

fn check_nan(cx: &LateContext, path: &Path, span: Span) {
    path.segments.last().map(|seg| {
        if &*seg.name.as_str() == "NAN" {
            span_lint(cx,
                      CMP_NAN,
                      span,
                      "doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead");
        }
    });
}

fn is_allowed(cx: &LateContext, expr: &Expr) -> bool {
    let res = eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None);
    if let Ok(ConstVal::Float(val)) = res {
        use std::cmp::Ordering;

        let zero = ConstFloat::FInfer {
            f32: 0.0,
            f64: 0.0,
        };

        let infinity = ConstFloat::FInfer {
            f32: ::std::f32::INFINITY,
            f64: ::std::f64::INFINITY,
        };

        let neg_infinity = ConstFloat::FInfer {
            f32: ::std::f32::NEG_INFINITY,
            f64: ::std::f64::NEG_INFINITY,
        };

        val.try_cmp(zero) == Ok(Ordering::Equal) || val.try_cmp(infinity) == Ok(Ordering::Equal) ||
        val.try_cmp(neg_infinity) == Ok(Ordering::Equal)
    } else {
        false
    }
}

fn is_float(cx: &LateContext, expr: &Expr) -> bool {
    matches!(walk_ptrs_ty(cx.tcx.tables().expr_ty(expr)).sty, ty::TyFloat(_))
}

fn check_to_owned(cx: &LateContext, expr: &Expr, other: &Expr, left: bool, op: Span) {
    let (arg_ty, snip) = match expr.node {
        ExprMethodCall(Spanned { node: ref name, .. }, _, ref args) if args.len() == 1 => {
            let name = &*name.as_str();
            if name == "to_string" || name == "to_owned" && is_str_arg(cx, args) {
                (cx.tcx.tables().expr_ty(&args[0]), snippet(cx, args[0].span, ".."))
            } else {
                return;
            }
        },
        ExprCall(ref path, ref v) if v.len() == 1 => {
            if let ExprPath(ref path) = path.node {
                if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) {
                    (cx.tcx.tables().expr_ty(&v[0]), snippet(cx, v[0].span, ".."))
                } else {
                    return;
                }
            } else {
                return;
            }
        },
        _ => return,
    };

    let other_ty = cx.tcx.tables().expr_ty(other);
    let partial_eq_trait_id = match cx.tcx.lang_items.eq_trait() {
        Some(id) => id,
        None => return,
    };

    if !implements_trait(cx, arg_ty, partial_eq_trait_id, vec![other_ty]) {
        return;
    }

    if left {
        span_lint(cx,
                  CMP_OWNED,
                  expr.span,
                  &format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
                            compare without allocation",
                           snip,
                           snippet(cx, op, "=="),
                           snippet(cx, other.span, "..")));
    } else {
        span_lint(cx,
                  CMP_OWNED,
                  expr.span,
                  &format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
                            compare without allocation",
                           snippet(cx, other.span, ".."),
                           snippet(cx, op, "=="),
                           snip));
    }

}

fn is_str_arg(cx: &LateContext, args: &[Expr]) -> bool {
    args.len() == 1 && matches!(walk_ptrs_ty(cx.tcx.tables().expr_ty(&args[0])).sty, ty::TyStr)
}

/// Heuristic to see if an expression is used. Should be compatible with `unused_variables`'s idea
/// of what it means for an expression to be "used".
fn is_used(cx: &LateContext, expr: &Expr) -> bool {
    if let Some(parent) = get_parent_expr(cx, expr) {
        match parent.node {
            ExprAssign(_, ref rhs) |
            ExprAssignOp(_, _, ref rhs) => **rhs == *expr,
            _ => is_used(cx, parent),
        }
    } else {
        true
    }
}

/// Test whether an expression is in a macro expansion (e.g. something generated by
/// `#[derive(...)`] or the like).
fn in_attributes_expansion(cx: &LateContext, expr: &Expr) -> bool {
    cx.sess().codemap().with_expn_info(expr.span.expn_id, |info_opt| {
        info_opt.map_or(false, |info| matches!(info.callee.format, ExpnFormat::MacroAttribute(_)))
    })
}

/// Test whether `def` is a variable defined outside a macro.
fn non_macro_local(cx: &LateContext, def: &def::Def) -> bool {
    match *def {
        def::Def::Local(id) |
        def::Def::Upvar(id, _, _) => {
            if let Some(span) = cx.tcx.map.span_if_local(id) {
                !in_macro(cx, span)
            } else {
                true
            }
        },
        _ => false,
    }
}