1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
use reexport::*;
use rustc::hir::*;
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use rustc::hir::intravisit::{Visitor, walk_expr, walk_block, walk_decl, NestedVisitorMap};
use rustc::hir::map::Node::NodeBlock;
use rustc::lint::*;
use rustc::middle::const_val::ConstVal;
use rustc::middle::region::CodeExtent;
use rustc::ty;
use rustc_const_eval::EvalHint::ExprTypeChecked;
use rustc_const_eval::eval_const_expr_partial;
use std::collections::HashMap;
use syntax::ast;
use utils::sugg;

use utils::{snippet, span_lint, get_parent_expr, match_trait_method, match_type, multispan_sugg, in_external_macro,
            is_refutable, span_help_and_lint, is_integer_literal, get_enclosing_block, span_lint_and_then, higher,
            last_path_segment};
use utils::paths;

/// **What it does:** Checks for looping over the range of `0..len` of some
/// collection just to get the values by index.
///
/// **Why is this bad?** Just iterating the collection itself makes the intent
/// more clear and is probably faster.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for i in 0..vec.len() {
///     println!("{}", vec[i]);
/// }
/// ```
declare_lint! {
    pub NEEDLESS_RANGE_LOOP,
    Warn,
    "for-looping over a range of indices where an iterator over items would do"
}

/// **What it does:** Checks for loops on `x.iter()` where `&x` will do, and
/// suggests the latter.
///
/// **Why is this bad?** Readability.
///
/// **Known problems:** False negatives. We currently only warn on some known
/// types.
///
/// **Example:**
/// ```rust
/// // with `y` a `Vec` or slice:
/// for x in y.iter() { .. }
/// ```
declare_lint! {
    pub EXPLICIT_ITER_LOOP,
    Warn,
    "for-looping over `_.iter()` or `_.iter_mut()` when `&_` or `&mut _` would do"
}

/// **What it does:** Checks for loops on `y.into_iter()` where `y` will do, and
/// suggests the latter.
///
/// **Why is this bad?** Readability.
///
/// **Known problems:** None
///
/// **Example:**
/// ```rust
/// // with `y` a `Vec` or slice:
/// for x in y.into_iter() { .. }
/// ```
declare_lint! {
    pub EXPLICIT_INTO_ITER_LOOP,
    Warn,
    "for-looping over `_.into_iter()` when `_` would do"
}

/// **What it does:** Checks for loops on `x.next()`.
///
/// **Why is this bad?** `next()` returns either `Some(value)` if there was a
/// value, or `None` otherwise. The insidious thing is that `Option<_>`
/// implements `IntoIterator`, so that possibly one value will be iterated,
/// leading to some hard to find bugs. No one will want to write such code
/// [except to win an Underhanded Rust
/// Contest](https://www.reddit.com/r/rust/comments/3hb0wm/underhanded_rust_contest/cu5yuhr).
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for x in y.next() { .. }
/// ```
declare_lint! {
    pub ITER_NEXT_LOOP,
    Warn,
    "for-looping over `_.next()` which is probably not intended"
}

/// **What it does:** Checks for `for` loops over `Option` values.
///
/// **Why is this bad?** Readability. This is more clearly expressed as an `if let`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for x in option { .. }
/// ```
///
/// This should be
/// ```rust
/// if let Some(x) = option { .. }
/// ```
declare_lint! {
    pub FOR_LOOP_OVER_OPTION,
    Warn,
    "for-looping over an `Option`, which is more clearly expressed as an `if let`"
}

/// **What it does:** Checks for `for` loops over `Result` values.
///
/// **Why is this bad?** Readability. This is more clearly expressed as an `if let`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for x in result { .. }
/// ```
///
/// This should be
/// ```rust
/// if let Ok(x) = result { .. }
/// ```
declare_lint! {
    pub FOR_LOOP_OVER_RESULT,
    Warn,
    "for-looping over a `Result`, which is more clearly expressed as an `if let`"
}

/// **What it does:** Detects `loop + match` combinations that are easier
/// written as a `while let` loop.
///
/// **Why is this bad?** The `while let` loop is usually shorter and more readable.
///
/// **Known problems:** Sometimes the wrong binding is displayed (#383).
///
/// **Example:**
/// ```rust
/// loop {
///     let x = match y {
///         Some(x) => x,
///         None => break,
///     }
///     // .. do something with x
/// }
/// // is easier written as
/// while let Some(x) = y {
///     // .. do something with x
/// }
/// ```
declare_lint! {
    pub WHILE_LET_LOOP,
    Warn,
    "`loop { if let { ... } else break }`, which can be written as a `while let` loop"
}

/// **What it does:** Checks for using `collect()` on an iterator without using
/// the result.
///
/// **Why is this bad?** It is more idiomatic to use a `for` loop over the
/// iterator instead.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// vec.iter().map(|x| /* some operation returning () */).collect::<Vec<_>>();
/// ```
declare_lint! {
    pub UNUSED_COLLECT,
    Warn,
    "`collect()`ing an iterator without using the result; this is usually better \
     written as a for loop"
}

/// **What it does:** Checks for loops over ranges `x..y` where both `x` and `y`
/// are constant and `x` is greater or equal to `y`, unless the range is
/// reversed or has a negative `.step_by(_)`.
///
/// **Why is it bad?** Such loops will either be skipped or loop until
/// wrap-around (in debug code, this may `panic!()`). Both options are probably
/// not intended.
///
/// **Known problems:** The lint cannot catch loops over dynamically defined
/// ranges. Doing this would require simulating all possible inputs and code
/// paths through the program, which would be complex and error-prone.
///
/// **Example:**
/// ```rust
/// for x in 5..10-5 { .. } // oops, stray `-`
/// ```
declare_lint! {
    pub REVERSE_RANGE_LOOP,
    Warn,
    "iteration over an empty range, such as `10..0` or `5..5`"
}

/// **What it does:** Checks `for` loops over slices with an explicit counter
/// and suggests the use of `.enumerate()`.
///
/// **Why is it bad?** Not only is the version using `.enumerate()` more
/// readable, the compiler is able to remove bounds checks which can lead to
/// faster code in some instances.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for i in 0..v.len() { foo(v[i]);
/// for i in 0..v.len() { bar(i, v[i]); }
/// ```
declare_lint! {
    pub EXPLICIT_COUNTER_LOOP,
    Warn,
    "for-looping with an explicit counter when `_.enumerate()` would do"
}

/// **What it does:** Checks for empty `loop` expressions.
///
/// **Why is this bad?** Those busy loops burn CPU cycles without doing
/// anything. Think of the environment and either block on something or at least
/// make the thread sleep for some microseconds.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// loop {}
/// ```
declare_lint! {
    pub EMPTY_LOOP,
    Warn,
    "empty `loop {}`, which should block or sleep"
}

/// **What it does:** Checks for `while let` expressions on iterators.
///
/// **Why is this bad?** Readability. A simple `for` loop is shorter and conveys
/// the intent better.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// while let Some(val) = iter() { .. }
/// ```
declare_lint! {
    pub WHILE_LET_ON_ITERATOR,
    Warn,
    "using a while-let loop instead of a for loop on an iterator"
}

/// **What it does:** Checks for iterating a map (`HashMap` or `BTreeMap`) and
/// ignoring either the keys or values.
///
/// **Why is this bad?** Readability. There are `keys` and `values` methods that
/// can be used to express that don't need the values or keys.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for (k, _) in &map { .. }
/// ```
///
/// could be replaced by
///
/// ```rust
/// for k in map.keys() { .. }
/// ```
declare_lint! {
    pub FOR_KV_MAP,
    Warn,
    "looping on a map using `iter` when `keys` or `values` would do"
}

#[derive(Copy, Clone)]
pub struct Pass;

impl LintPass for Pass {
    fn get_lints(&self) -> LintArray {
        lint_array!(NEEDLESS_RANGE_LOOP,
                    EXPLICIT_ITER_LOOP,
                    EXPLICIT_INTO_ITER_LOOP,
                    ITER_NEXT_LOOP,
                    FOR_LOOP_OVER_RESULT,
                    FOR_LOOP_OVER_OPTION,
                    WHILE_LET_LOOP,
                    UNUSED_COLLECT,
                    REVERSE_RANGE_LOOP,
                    EXPLICIT_COUNTER_LOOP,
                    EMPTY_LOOP,
                    WHILE_LET_ON_ITERATOR,
                    FOR_KV_MAP)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if let Some((pat, arg, body)) = higher::for_loop(expr) {
            check_for_loop(cx, pat, arg, body, expr);
        }
        // check for `loop { if let {} else break }` that could be `while let`
        // (also matches an explicit "match" instead of "if let")
        // (even if the "match" or "if let" is used for declaration)
        if let ExprLoop(ref block, _, LoopSource::Loop) = expr.node {
            // also check for empty `loop {}` statements
            if block.stmts.is_empty() && block.expr.is_none() {
                span_lint(cx,
                          EMPTY_LOOP,
                          expr.span,
                          "empty `loop {}` detected. You may want to either use `panic!()` or add \
                           `std::thread::sleep(..);` to the loop body.");
            }

            // extract the expression from the first statement (if any) in a block
            let inner_stmt_expr = extract_expr_from_first_stmt(block);
            // or extract the first expression (if any) from the block
            if let Some(inner) = inner_stmt_expr.or_else(|| extract_first_expr(block)) {
                if let ExprMatch(ref matchexpr, ref arms, ref source) = inner.node {
                    // ensure "if let" compatible match structure
                    match *source {
                        MatchSource::Normal |
                        MatchSource::IfLetDesugar { .. } => {
                            if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() &&
                               arms[1].pats.len() == 1 && arms[1].guard.is_none() &&
                               is_break_expr(&arms[1].body) {
                                if in_external_macro(cx, expr.span) {
                                    return;
                                }

                                // NOTE: we used to make build a body here instead of using
                                // ellipsis, this was removed because:
                                // 1) it was ugly with big bodies;
                                // 2) it was not indented properly;
                                // 3) it wasn’t very smart (see #675).
                                span_lint_and_then(cx,
                                                   WHILE_LET_LOOP,
                                                   expr.span,
                                                   "this loop could be written as a `while let` loop",
                                                   |db| {
                                    let sug = format!("while let {} = {} {{ .. }}",
                                                      snippet(cx, arms[0].pats[0].span, ".."),
                                                      snippet(cx, matchexpr.span, ".."));
                                    db.span_suggestion(expr.span, "try", sug);
                                });
                            }
                        },
                        _ => (),
                    }
                }
            }
        }
        if let ExprMatch(ref match_expr, ref arms, MatchSource::WhileLetDesugar) = expr.node {
            let pat = &arms[0].pats[0].node;
            if let (&PatKind::TupleStruct(ref qpath, ref pat_args, _),
                    &ExprMethodCall(method_name, _, ref method_args)) = (pat, &match_expr.node) {
                let iter_expr = &method_args[0];
                let lhs_constructor = last_path_segment(qpath);
                if &*method_name.node.as_str() == "next" && match_trait_method(cx, match_expr, &paths::ITERATOR) &&
                   &*lhs_constructor.name.as_str() == "Some" && !is_refutable(cx, &pat_args[0]) &&
                   !is_iterator_used_after_while_let(cx, iter_expr) {
                    let iterator = snippet(cx, method_args[0].span, "_");
                    let loop_var = snippet(cx, pat_args[0].span, "_");
                    span_lint_and_then(cx,
                                       WHILE_LET_ON_ITERATOR,
                                       expr.span,
                                       "this loop could be written as a `for` loop",
                                       |db| {
                        db.span_suggestion(expr.span, "try", format!("for {} in {} {{ .. }}", loop_var, iterator));
                    });
                }
            }
        }
    }

    fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, stmt: &'tcx Stmt) {
        if let StmtSemi(ref expr, _) = stmt.node {
            if let ExprMethodCall(ref method, _, ref args) = expr.node {
                if args.len() == 1 && &*method.node.as_str() == "collect" &&
                   match_trait_method(cx, expr, &paths::ITERATOR) {
                    span_lint(cx,
                              UNUSED_COLLECT,
                              expr.span,
                              "you are collect()ing an iterator and throwing away the result. \
                               Consider using an explicit for loop to exhaust the iterator");
                }
            }
        }
    }
}

fn check_for_loop<'a, 'tcx>(
    cx: &LateContext<'a, 'tcx>,
    pat: &'tcx Pat,
    arg: &'tcx Expr,
    body: &'tcx Expr,
    expr: &'tcx Expr
) {
    check_for_loop_range(cx, pat, arg, body, expr);
    check_for_loop_reverse_range(cx, arg, expr);
    check_for_loop_arg(cx, pat, arg, expr);
    check_for_loop_explicit_counter(cx, arg, body, expr);
    check_for_loop_over_map_kv(cx, pat, arg, body, expr);
}

/// Check for looping over a range and then indexing a sequence with it.
/// The iteratee must be a range literal.
fn check_for_loop_range<'a, 'tcx>(
    cx: &LateContext<'a, 'tcx>,
    pat: &'tcx Pat,
    arg: &'tcx Expr,
    body: &'tcx Expr,
    expr: &'tcx Expr
) {
    if let Some(higher::Range { start: Some(start), ref end, limits }) = higher::range(arg) {
        // the var must be a single name
        if let PatKind::Binding(_, def_id, ref ident, _) = pat.node {
            let mut visitor = VarVisitor {
                cx: cx,
                var: def_id,
                indexed: HashMap::new(),
                nonindex: false,
            };
            walk_expr(&mut visitor, body);

            // linting condition: we only indexed one variable
            if visitor.indexed.len() == 1 {
                let (indexed, indexed_extent) = visitor.indexed
                    .into_iter()
                    .next()
                    .unwrap_or_else(|| unreachable!() /* len == 1 */);

                // ensure that the indexed variable was declared before the loop, see #601
                if let Some(indexed_extent) = indexed_extent {
                    let pat_extent = cx.tcx.region_maps.var_scope(pat.id);
                    if cx.tcx.region_maps.is_subscope_of(indexed_extent, pat_extent) {
                        return;
                    }
                }

                let starts_at_zero = is_integer_literal(start, 0);

                let skip = if starts_at_zero {
                    "".to_owned()
                } else {
                    format!(".skip({})", snippet(cx, start.span, ".."))
                };

                let take = if let Some(end) = *end {
                    if is_len_call(end, &indexed) {
                        "".to_owned()
                    } else {
                        match limits {
                            ast::RangeLimits::Closed => {
                                let end = sugg::Sugg::hir(cx, end, "<count>");
                                format!(".take({})", end + sugg::ONE)
                            },
                            ast::RangeLimits::HalfOpen => format!(".take({})", snippet(cx, end.span, "..")),
                        }
                    }
                } else {
                    "".to_owned()
                };

                if visitor.nonindex {
                    span_lint_and_then(cx,
                                       NEEDLESS_RANGE_LOOP,
                                       expr.span,
                                       &format!("the loop variable `{}` is used to index `{}`", ident.node, indexed),
                                       |db| {
                        multispan_sugg(db,
                                       "consider using an iterator".to_string(),
                                       &[(pat.span, &format!("({}, <item>)", ident.node)),
                                         (arg.span, &format!("{}.iter().enumerate(){}{}", indexed, take, skip))]);
                    });
                } else {
                    let repl = if starts_at_zero && take.is_empty() {
                        format!("&{}", indexed)
                    } else {
                        format!("{}.iter(){}{}", indexed, take, skip)
                    };

                    span_lint_and_then(cx,
                                       NEEDLESS_RANGE_LOOP,
                                       expr.span,
                                       &format!("the loop variable `{}` is only used to index `{}`.",
                                                ident.node,
                                                indexed),
                                       |db| {
                        multispan_sugg(db,
                                       "consider using an iterator".to_string(),
                                       &[(pat.span, "<item>"), (arg.span, &repl)]);
                    });
                }
            }
        }
    }
}

fn is_len_call(expr: &Expr, var: &Name) -> bool {
    if_let_chain! {[
        let ExprMethodCall(method, _, ref len_args) = expr.node,
        len_args.len() == 1,
        &*method.node.as_str() == "len",
        let ExprPath(QPath::Resolved(_, ref path)) = len_args[0].node,
        path.segments.len() == 1,
        &path.segments[0].name == var
    ], {
        return true;
    }}

    false
}

fn check_for_loop_reverse_range(cx: &LateContext, arg: &Expr, expr: &Expr) {
    // if this for loop is iterating over a two-sided range...
    if let Some(higher::Range { start: Some(start), end: Some(end), limits }) = higher::range(arg) {
        // ...and both sides are compile-time constant integers...
        if let Ok(start_idx) = eval_const_expr_partial(cx.tcx, start, ExprTypeChecked, None) {
            if let Ok(end_idx) = eval_const_expr_partial(cx.tcx, end, ExprTypeChecked, None) {
                // ...and the start index is greater than the end index,
                // this loop will never run. This is often confusing for developers
                // who think that this will iterate from the larger value to the
                // smaller value.
                let (sup, eq) = match (start_idx, end_idx) {
                    (ConstVal::Integral(start_idx), ConstVal::Integral(end_idx)) => {
                        (start_idx > end_idx, start_idx == end_idx)
                    },
                    _ => (false, false),
                };

                if sup {
                    let start_snippet = snippet(cx, start.span, "_");
                    let end_snippet = snippet(cx, end.span, "_");
                    let dots = if limits == ast::RangeLimits::Closed {
                        "..."
                    } else {
                        ".."
                    };

                    span_lint_and_then(cx,
                                       REVERSE_RANGE_LOOP,
                                       expr.span,
                                       "this range is empty so this for loop will never run",
                                       |db| {
                        db.span_suggestion(arg.span,
                                           "consider using the following if you are attempting to iterate over this \
                                            range in reverse",
                                           format!("({end}{dots}{start}).rev()",
                                                   end = end_snippet,
                                                   dots = dots,
                                                   start = start_snippet));
                    });
                } else if eq && limits != ast::RangeLimits::Closed {
                    // if they are equal, it's also problematic - this loop
                    // will never run.
                    span_lint(cx,
                              REVERSE_RANGE_LOOP,
                              expr.span,
                              "this range is empty so this for loop will never run");
                }
            }
        }
    }
}

fn check_for_loop_arg(cx: &LateContext, pat: &Pat, arg: &Expr, expr: &Expr) {
    let mut next_loop_linted = false; // whether or not ITER_NEXT_LOOP lint was used
    if let ExprMethodCall(ref method, _, ref args) = arg.node {
        // just the receiver, no arguments
        if args.len() == 1 {
            let method_name = method.node;
            // check for looping over x.iter() or x.iter_mut(), could use &x or &mut x
            if &*method_name.as_str() == "iter" || &*method_name.as_str() == "iter_mut" {
                if is_ref_iterable_type(cx, &args[0]) {
                    let object = snippet(cx, args[0].span, "_");
                    span_lint(cx,
                              EXPLICIT_ITER_LOOP,
                              expr.span,
                              &format!("it is more idiomatic to loop over `&{}{}` instead of `{}.{}()`",
                                       if &*method_name.as_str() == "iter_mut" {
                                           "mut "
                                       } else {
                                           ""
                                       },
                                       object,
                                       object,
                                       method_name));
                }
            } else if &*method_name.as_str() == "into_iter" && match_trait_method(cx, arg, &paths::INTO_ITERATOR) {
                let object = snippet(cx, args[0].span, "_");
                span_lint(cx,
                          EXPLICIT_INTO_ITER_LOOP,
                          expr.span,
                          &format!("it is more idiomatic to loop over `{}` instead of `{}.{}()`",
                                   object,
                                   object,
                                   method_name));

            } else if &*method_name.as_str() == "next" && match_trait_method(cx, arg, &paths::ITERATOR) {
                span_lint(cx,
                          ITER_NEXT_LOOP,
                          expr.span,
                          "you are iterating over `Iterator::next()` which is an Option; this will compile but is \
                           probably not what you want");
                next_loop_linted = true;
            }
        }
    }
    if !next_loop_linted {
        check_arg_type(cx, pat, arg);
    }
}

/// Check for `for` loops over `Option`s and `Results`
fn check_arg_type(cx: &LateContext, pat: &Pat, arg: &Expr) {
    let ty = cx.tcx.tables().expr_ty(arg);
    if match_type(cx, ty, &paths::OPTION) {
        span_help_and_lint(cx,
                           FOR_LOOP_OVER_OPTION,
                           arg.span,
                           &format!("for loop over `{0}`, which is an `Option`. This is more readably written as an \
                                     `if let` statement.",
                                    snippet(cx, arg.span, "_")),
                           &format!("consider replacing `for {0} in {1}` with `if let Some({0}) = {1}`",
                                    snippet(cx, pat.span, "_"),
                                    snippet(cx, arg.span, "_")));
    } else if match_type(cx, ty, &paths::RESULT) {
        span_help_and_lint(cx,
                           FOR_LOOP_OVER_RESULT,
                           arg.span,
                           &format!("for loop over `{0}`, which is a `Result`. This is more readably written as an \
                                     `if let` statement.",
                                    snippet(cx, arg.span, "_")),
                           &format!("consider replacing `for {0} in {1}` with `if let Ok({0}) = {1}`",
                                    snippet(cx, pat.span, "_"),
                                    snippet(cx, arg.span, "_")));
    }
}

fn check_for_loop_explicit_counter<'a, 'tcx>(
    cx: &LateContext<'a, 'tcx>,
    arg: &'tcx Expr,
    body: &'tcx Expr,
    expr: &'tcx Expr
) {
    // Look for variables that are incremented once per loop iteration.
    let mut visitor = IncrementVisitor {
        cx: cx,
        states: HashMap::new(),
        depth: 0,
        done: false,
    };
    walk_expr(&mut visitor, body);

    // For each candidate, check the parent block to see if
    // it's initialized to zero at the start of the loop.
    let map = &cx.tcx.map;
    let parent_scope = map.get_enclosing_scope(expr.id).and_then(|id| map.get_enclosing_scope(id));
    if let Some(parent_id) = parent_scope {
        if let NodeBlock(block) = map.get(parent_id) {
            for (id, _) in visitor.states.iter().filter(|&(_, v)| *v == VarState::IncrOnce) {
                let mut visitor2 = InitializeVisitor {
                    cx: cx,
                    end_expr: expr,
                    var_id: *id,
                    state: VarState::IncrOnce,
                    name: None,
                    depth: 0,
                    past_loop: false,
                };
                walk_block(&mut visitor2, block);

                if visitor2.state == VarState::Warn {
                    if let Some(name) = visitor2.name {
                        span_lint(cx,
                                  EXPLICIT_COUNTER_LOOP,
                                  expr.span,
                                  &format!("the variable `{0}` is used as a loop counter. Consider using `for ({0}, \
                                            item) in {1}.enumerate()` or similar iterators",
                                           name,
                                           snippet(cx, arg.span, "_")));
                    }
                }
            }
        }
    }
}

/// Check for the `FOR_KV_MAP` lint.
fn check_for_loop_over_map_kv<'a, 'tcx>(
    cx: &LateContext<'a, 'tcx>,
    pat: &'tcx Pat,
    arg: &'tcx Expr,
    body: &'tcx Expr,
    expr: &'tcx Expr
) {
    let pat_span = pat.span;

    if let PatKind::Tuple(ref pat, _) = pat.node {
        if pat.len() == 2 {
            let arg_span = arg.span;
            let (new_pat_span, kind, ty, mutbl) = match cx.tcx.tables().expr_ty(arg).sty {
                ty::TyRef(_, ref tam) => {
                    match (&pat[0].node, &pat[1].node) {
                        (key, _) if pat_is_wild(cx, key, body) => (pat[1].span, "value", tam.ty, tam.mutbl),
                        (_, value) if pat_is_wild(cx, value, body) => (pat[0].span, "key", tam.ty, MutImmutable),
                        _ => return,
                    }
                },
                _ => return,
            };
            let mutbl = match mutbl {
                MutImmutable => "",
                MutMutable => "_mut",
            };
            let arg = match arg.node {
                ExprAddrOf(_, ref expr) => &**expr,
                _ => arg,
            };

            if match_type(cx, ty, &paths::HASHMAP) || match_type(cx, ty, &paths::BTREEMAP) {
                span_lint_and_then(cx,
                                   FOR_KV_MAP,
                                   expr.span,
                                   &format!("you seem to want to iterate on a map's {}s", kind),
                                   |db| {
                    let map = sugg::Sugg::hir(cx, arg, "map");
                    multispan_sugg(db,
                                   "use the corresponding method".into(),
                                   &[(pat_span, &snippet(cx, new_pat_span, kind)),
                                     (arg_span, &format!("{}.{}s{}()", map.maybe_par(), kind, mutbl))]);
                });
            }
        }
    }

}

/// Return true if the pattern is a `PatWild` or an ident prefixed with `'_'`.
fn pat_is_wild<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, pat: &'tcx PatKind, body: &'tcx Expr) -> bool {
    match *pat {
        PatKind::Wild => true,
        PatKind::Binding(_, _, ident, None) if ident.node.as_str().starts_with('_') => {
            let mut visitor = UsedVisitor {
                var: ident.node,
                used: false,
                cx: cx,
            };
            walk_expr(&mut visitor, body);
            !visitor.used
        },
        _ => false,
    }
}

struct UsedVisitor<'a, 'tcx: 'a> {
    var: ast::Name, // var to look for
    used: bool, // has the var been used otherwise?
    cx: &'a LateContext<'a, 'tcx>,
}

impl<'a, 'tcx: 'a> Visitor<'tcx> for UsedVisitor<'a, 'tcx> {
    fn visit_expr(&mut self, expr: &'tcx Expr) {
        if let ExprPath(QPath::Resolved(None, ref path)) = expr.node {
            if path.segments.len() == 1 && path.segments[0].name == self.var {
                self.used = true;
                return;
            }
        }

        walk_expr(self, expr);
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::All(&self.cx.tcx.map)
    }
}

struct VarVisitor<'a, 'tcx: 'a> {
    cx: &'a LateContext<'a, 'tcx>, // context reference
    var: DefId, // var name to look for as index
    indexed: HashMap<Name, Option<CodeExtent>>, // indexed variables, the extent is None for global
    nonindex: bool, // has the var been used otherwise?
}

impl<'a, 'tcx> Visitor<'tcx> for VarVisitor<'a, 'tcx> {
    fn visit_expr(&mut self, expr: &'tcx Expr) {
        if let ExprPath(ref qpath) = expr.node {
            if let QPath::Resolved(None, ref path) = *qpath {
                if path.segments.len() == 1 && self.cx.tcx.tables().qpath_def(qpath, expr.id).def_id() == self.var {
                    // we are referencing our variable! now check if it's as an index
                    if_let_chain! {[
                        let Some(parexpr) = get_parent_expr(self.cx, expr),
                        let ExprIndex(ref seqexpr, _) = parexpr.node,
                        let ExprPath(ref seqpath) = seqexpr.node,
                        let QPath::Resolved(None, ref seqvar) = *seqpath,
                        seqvar.segments.len() == 1
                    ], {
                        let def = self.cx.tcx.tables().qpath_def(seqpath, seqexpr.id);
                        match def {
                            Def::Local(..) | Def::Upvar(..) => {
                                let def_id = def.def_id();
                                let node_id = self.cx.tcx.map.as_local_node_id(def_id).unwrap();

                                let extent = self.cx.tcx.region_maps.var_scope(node_id);
                                self.indexed.insert(seqvar.segments[0].name, Some(extent));
                                return;  // no need to walk further
                            }
                            Def::Static(..) | Def::Const(..) => {
                                self.indexed.insert(seqvar.segments[0].name, None);
                                return;  // no need to walk further
                            }
                            _ => (),
                        }
                    }}
                    // we are not indexing anything, record that
                    self.nonindex = true;
                    return;
                }
            }
        }
        walk_expr(self, expr);
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::All(&self.cx.tcx.map)
    }
}

fn is_iterator_used_after_while_let<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, iter_expr: &'tcx Expr) -> bool {
    let def_id = match var_def_id(cx, iter_expr) {
        Some(id) => id,
        None => return false,
    };
    let mut visitor = VarUsedAfterLoopVisitor {
        cx: cx,
        def_id: def_id,
        iter_expr_id: iter_expr.id,
        past_while_let: false,
        var_used_after_while_let: false,
    };
    if let Some(enclosing_block) = get_enclosing_block(cx, def_id) {
        walk_block(&mut visitor, enclosing_block);
    }
    visitor.var_used_after_while_let
}

struct VarUsedAfterLoopVisitor<'a, 'tcx: 'a> {
    cx: &'a LateContext<'a, 'tcx>,
    def_id: NodeId,
    iter_expr_id: NodeId,
    past_while_let: bool,
    var_used_after_while_let: bool,
}

impl<'a, 'tcx> Visitor<'tcx> for VarUsedAfterLoopVisitor<'a, 'tcx> {
    fn visit_expr(&mut self, expr: &'tcx Expr) {
        if self.past_while_let {
            if Some(self.def_id) == var_def_id(self.cx, expr) {
                self.var_used_after_while_let = true;
            }
        } else if self.iter_expr_id == expr.id {
            self.past_while_let = true;
        }
        walk_expr(self, expr);
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::All(&self.cx.tcx.map)
    }
}


/// Return true if the type of expr is one that provides `IntoIterator` impls
/// for `&T` and `&mut T`, such as `Vec`.
#[cfg_attr(rustfmt, rustfmt_skip)]
fn is_ref_iterable_type(cx: &LateContext, e: &Expr) -> bool {
    // no walk_ptrs_ty: calling iter() on a reference can make sense because it
    // will allow further borrows afterwards
    let ty = cx.tcx.tables().expr_ty(e);
    is_iterable_array(ty) ||
    match_type(cx, ty, &paths::VEC) ||
    match_type(cx, ty, &paths::LINKED_LIST) ||
    match_type(cx, ty, &paths::HASHMAP) ||
    match_type(cx, ty, &paths::HASHSET) ||
    match_type(cx, ty, &paths::VEC_DEQUE) ||
    match_type(cx, ty, &paths::BINARY_HEAP) ||
    match_type(cx, ty, &paths::BTREEMAP) ||
    match_type(cx, ty, &paths::BTREESET)
}

fn is_iterable_array(ty: ty::Ty) -> bool {
    // IntoIterator is currently only implemented for array sizes <= 32 in rustc
    match ty.sty {
        ty::TyArray(_, 0...32) => true,
        _ => false,
    }
}

/// If a block begins with a statement (possibly a `let` binding) and has an expression, return it.
fn extract_expr_from_first_stmt(block: &Block) -> Option<&Expr> {
    if block.stmts.is_empty() {
        return None;
    }
    if let StmtDecl(ref decl, _) = block.stmts[0].node {
        if let DeclLocal(ref local) = decl.node {
            if let Some(ref expr) = local.init {
                Some(expr)
            } else {
                None
            }
        } else {
            None
        }
    } else {
        None
    }
}

/// If a block begins with an expression (with or without semicolon), return it.
fn extract_first_expr(block: &Block) -> Option<&Expr> {
    match block.expr {
        Some(ref expr) if block.stmts.is_empty() => Some(expr),
        None if !block.stmts.is_empty() => {
            match block.stmts[0].node {
                StmtExpr(ref expr, _) |
                StmtSemi(ref expr, _) => Some(expr),
                StmtDecl(..) => None,
            }
        },
        _ => None,
    }
}

/// Return true if expr contains a single break expr (maybe within a block).
fn is_break_expr(expr: &Expr) -> bool {
    match expr.node {
        ExprBreak(None, _) => true,
        ExprBlock(ref b) => {
            match extract_first_expr(b) {
                Some(subexpr) => is_break_expr(subexpr),
                None => false,
            }
        },
        _ => false,
    }
}

// To trigger the EXPLICIT_COUNTER_LOOP lint, a variable must be
// incremented exactly once in the loop body, and initialized to zero
// at the start of the loop.
#[derive(PartialEq)]
enum VarState {
    Initial, // Not examined yet
    IncrOnce, // Incremented exactly once, may be a loop counter
    Declared, // Declared but not (yet) initialized to zero
    Warn,
    DontWarn,
}

/// Scan a for loop for variables that are incremented exactly once.
struct IncrementVisitor<'a, 'tcx: 'a> {
    cx: &'a LateContext<'a, 'tcx>, // context reference
    states: HashMap<NodeId, VarState>, // incremented variables
    depth: u32, // depth of conditional expressions
    done: bool,
}

impl<'a, 'tcx> Visitor<'tcx> for IncrementVisitor<'a, 'tcx> {
    fn visit_expr(&mut self, expr: &'tcx Expr) {
        if self.done {
            return;
        }

        // If node is a variable
        if let Some(def_id) = var_def_id(self.cx, expr) {
            if let Some(parent) = get_parent_expr(self.cx, expr) {
                let state = self.states.entry(def_id).or_insert(VarState::Initial);

                match parent.node {
                    ExprAssignOp(op, ref lhs, ref rhs) => {
                        if lhs.id == expr.id {
                            if op.node == BiAdd && is_integer_literal(rhs, 1) {
                                *state = match *state {
                                    VarState::Initial if self.depth == 0 => VarState::IncrOnce,
                                    _ => VarState::DontWarn,
                                };
                            } else {
                                // Assigned some other value
                                *state = VarState::DontWarn;
                            }
                        }
                    },
                    ExprAssign(ref lhs, _) if lhs.id == expr.id => *state = VarState::DontWarn,
                    ExprAddrOf(mutability, _) if mutability == MutMutable => *state = VarState::DontWarn,
                    _ => (),
                }
            }
        } else if is_loop(expr) {
            self.states.clear();
            self.done = true;
            return;
        } else if is_conditional(expr) {
            self.depth += 1;
            walk_expr(self, expr);
            self.depth -= 1;
            return;
        }
        walk_expr(self, expr);
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::All(&self.cx.tcx.map)
    }
}

/// Check whether a variable is initialized to zero at the start of a loop.
struct InitializeVisitor<'a, 'tcx: 'a> {
    cx: &'a LateContext<'a, 'tcx>, // context reference
    end_expr: &'tcx Expr, // the for loop. Stop scanning here.
    var_id: NodeId,
    state: VarState,
    name: Option<Name>,
    depth: u32, // depth of conditional expressions
    past_loop: bool,
}

impl<'a, 'tcx> Visitor<'tcx> for InitializeVisitor<'a, 'tcx> {
    fn visit_decl(&mut self, decl: &'tcx Decl) {
        // Look for declarations of the variable
        if let DeclLocal(ref local) = decl.node {
            if local.pat.id == self.var_id {
                if let PatKind::Binding(_, _, ref ident, _) = local.pat.node {
                    self.name = Some(ident.node);

                    self.state = if let Some(ref init) = local.init {
                        if is_integer_literal(init, 0) {
                            VarState::Warn
                        } else {
                            VarState::Declared
                        }
                    } else {
                        VarState::Declared
                    }
                }
            }
        }
        walk_decl(self, decl);
    }

    fn visit_expr(&mut self, expr: &'tcx Expr) {
        if self.state == VarState::DontWarn {
            return;
        }
        if expr == self.end_expr {
            self.past_loop = true;
            return;
        }
        // No need to visit expressions before the variable is
        // declared
        if self.state == VarState::IncrOnce {
            return;
        }

        // If node is the desired variable, see how it's used
        if var_def_id(self.cx, expr) == Some(self.var_id) {
            if let Some(parent) = get_parent_expr(self.cx, expr) {
                match parent.node {
                    ExprAssignOp(_, ref lhs, _) if lhs.id == expr.id => {
                        self.state = VarState::DontWarn;
                    },
                    ExprAssign(ref lhs, ref rhs) if lhs.id == expr.id => {
                        self.state = if is_integer_literal(rhs, 0) && self.depth == 0 {
                            VarState::Warn
                        } else {
                            VarState::DontWarn
                        }
                    },
                    ExprAddrOf(mutability, _) if mutability == MutMutable => self.state = VarState::DontWarn,
                    _ => (),
                }
            }

            if self.past_loop {
                self.state = VarState::DontWarn;
                return;
            }
        } else if !self.past_loop && is_loop(expr) {
            self.state = VarState::DontWarn;
            return;
        } else if is_conditional(expr) {
            self.depth += 1;
            walk_expr(self, expr);
            self.depth -= 1;
            return;
        }
        walk_expr(self, expr);
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::All(&self.cx.tcx.map)
    }
}

fn var_def_id(cx: &LateContext, expr: &Expr) -> Option<NodeId> {
    if let ExprPath(ref qpath) = expr.node {
        let path_res = cx.tcx.tables().qpath_def(qpath, expr.id);
        if let Def::Local(def_id) = path_res {
            let node_id = cx.tcx.map.as_local_node_id(def_id).expect("That DefId should be valid");
            return Some(node_id);
        }
    }
    None
}

fn is_loop(expr: &Expr) -> bool {
    match expr.node {
        ExprLoop(..) | ExprWhile(..) => true,
        _ => false,
    }
}

fn is_conditional(expr: &Expr) -> bool {
    match expr.node {
        ExprIf(..) | ExprMatch(..) => true,
        _ => false,
    }
}