1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//! calculate cyclomatic complexity and warn about overly complex functions

use rustc::cfg::CFG;
use rustc::lint::*;
use rustc::ty;
use rustc::hir::*;
use rustc::hir::intravisit::{Visitor, walk_expr, NestedVisitorMap};
use syntax::ast::Attribute;
use syntax::attr;
use syntax::codemap::Span;

use utils::{in_macro, LimitStack, span_help_and_lint, paths, match_type};

/// **What it does:** Checks for methods with high cyclomatic complexity.
///
/// **Why is this bad?** Methods of high cyclomatic complexity tend to be badly
/// readable. Also LLVM will usually optimize small methods better.
///
/// **Known problems:** Sometimes it's hard to find a way to reduce the complexity.
///
/// **Example:** No. You'll see it when you get the warning.
declare_lint! {
    pub CYCLOMATIC_COMPLEXITY,
    Warn,
    "functions that should be split up into multiple functions"
}

pub struct CyclomaticComplexity {
    limit: LimitStack,
}

impl CyclomaticComplexity {
    pub fn new(limit: u64) -> Self {
        CyclomaticComplexity { limit: LimitStack::new(limit) }
    }
}

impl LintPass for CyclomaticComplexity {
    fn get_lints(&self) -> LintArray {
        lint_array!(CYCLOMATIC_COMPLEXITY)
    }
}

impl CyclomaticComplexity {
    fn check<'a, 'tcx: 'a>(&mut self, cx: &'a LateContext<'a, 'tcx>, expr: &'tcx Expr, span: Span) {
        if in_macro(cx, span) {
            return;
        }

        let cfg = CFG::new(cx.tcx, expr);
        let n = cfg.graph.len_nodes() as u64;
        let e = cfg.graph.len_edges() as u64;
        if e + 2 < n {
            // the function has unreachable code, other lints should catch this
            return;
        }
        let cc = e + 2 - n;
        let mut helper = CCHelper {
            match_arms: 0,
            divergence: 0,
            short_circuits: 0,
            returns: 0,
            cx: cx,
        };
        helper.visit_expr(expr);
        let CCHelper { match_arms, divergence, short_circuits, returns, .. } = helper;
        let ret_ty = cx.tcx.tables().node_id_to_type(expr.id);
        let ret_adjust = if match_type(cx, ret_ty, &paths::RESULT) {
            returns
        } else {
            returns / 2
        };

        if cc + divergence < match_arms + short_circuits {
            report_cc_bug(cx, cc, match_arms, divergence, short_circuits, ret_adjust, span);
        } else {
            let mut rust_cc = cc + divergence - match_arms - short_circuits;
            // prevent degenerate cases where unreachable code contains `return` statements
            if rust_cc >= ret_adjust {
                rust_cc -= ret_adjust;
            }
            if rust_cc > self.limit.limit() {
                span_help_and_lint(cx,
                                   CYCLOMATIC_COMPLEXITY,
                                   span,
                                   &format!("the function has a cyclomatic complexity of {}", rust_cc),
                                   "you could split it up into multiple smaller functions");
            }
        }
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CyclomaticComplexity {
    fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
        if let ItemFn(_, _, _, _, _, eid) = item.node {
            if !attr::contains_name(&item.attrs, "test") {
                self.check(cx, &cx.tcx.map.body(eid).value, item.span);
            }
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx ImplItem) {
        if let ImplItemKind::Method(_, eid) = item.node {
            self.check(cx, &cx.tcx.map.body(eid).value, item.span);
        }
    }

    fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx TraitItem) {
        if let TraitItemKind::Method(_, TraitMethod::Provided(eid)) = item.node {
            self.check(cx, &cx.tcx.map.body(eid).value, item.span);
        }
    }

    fn enter_lint_attrs(&mut self, cx: &LateContext<'a, 'tcx>, attrs: &'tcx [Attribute]) {
        self.limit.push_attrs(cx.sess(), attrs, "cyclomatic_complexity");
    }
    fn exit_lint_attrs(&mut self, cx: &LateContext<'a, 'tcx>, attrs: &'tcx [Attribute]) {
        self.limit.pop_attrs(cx.sess(), attrs, "cyclomatic_complexity");
    }
}

struct CCHelper<'a, 'tcx: 'a> {
    match_arms: u64,
    divergence: u64,
    returns: u64,
    short_circuits: u64, // && and ||
    cx: &'a LateContext<'a, 'tcx>,
}

impl<'a, 'tcx> Visitor<'tcx> for CCHelper<'a, 'tcx> {
    fn visit_expr(&mut self, e: &'tcx Expr) {
        match e.node {
            ExprMatch(_, ref arms, _) => {
                walk_expr(self, e);
                let arms_n: u64 = arms.iter().map(|arm| arm.pats.len() as u64).sum();
                if arms_n > 1 {
                    self.match_arms += arms_n - 2;
                }
            },
            ExprCall(ref callee, _) => {
                walk_expr(self, e);
                let ty = self.cx.tcx.tables().node_id_to_type(callee.id);
                match ty.sty {
                    ty::TyFnDef(_, _, ty) |
                    ty::TyFnPtr(ty) if ty.sig.skip_binder().output().sty == ty::TyNever => {
                        self.divergence += 1;
                    },
                    _ => (),
                }
            },
            ExprClosure(..) => (),
            ExprBinary(op, _, _) => {
                walk_expr(self, e);
                match op.node {
                    BiAnd | BiOr => self.short_circuits += 1,
                    _ => (),
                }
            },
            ExprRet(_) => self.returns += 1,
            _ => walk_expr(self, e),
        }
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::None
    }
}

#[cfg(feature="debugging")]
fn report_cc_bug(_: &LateContext, cc: u64, narms: u64, div: u64, shorts: u64, returns: u64, span: Span) {
    span_bug!(span,
              "Clippy encountered a bug calculating cyclomatic complexity: cc = {}, arms = {}, \
               div = {}, shorts = {}, returns = {}. Please file a bug report.",
              cc,
              narms,
              div,
              shorts,
              returns);
}
#[cfg(not(feature="debugging"))]
fn report_cc_bug(cx: &LateContext, cc: u64, narms: u64, div: u64, shorts: u64, returns: u64, span: Span) {
    if cx.current_level(CYCLOMATIC_COMPLEXITY) != Level::Allow {
        cx.sess().span_note_without_error(span,
                                          &format!("Clippy encountered a bug calculating cyclomatic complexity \
                                                    (hide this message with `#[allow(cyclomatic_complexity)]`): \
                                                    cc = {}, arms = {}, div = {}, shorts = {}, returns = {}. \
                                                    Please file a bug report.",
                                                   cc,
                                                   narms,
                                                   div,
                                                   shorts,
                                                   returns));
    }
}