1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use rustc::hir;
use rustc::lint::*;
use syntax::ast;
use utils::{span_lint_and_then, snippet_opt, SpanlessEq, get_trait_def_id, implements_trait};
use utils::{higher, sugg};

/// **What it does:** Checks for compound assignment operations (`+=` and similar).
///
/// **Why is this bad?** Projects with many developers from languages without
/// those operations may find them unreadable and not worth their weight.
///
/// **Known problems:** Types implementing `OpAssign` don't necessarily implement `Op`.
///
/// **Example:**
/// ```rust
/// a += 1;
/// ```
declare_restriction_lint! {
    pub ASSIGN_OPS,
    "any compound assignment operation"
}

/// **What it does:** Checks for `a = a op b` or `a = b commutative_op a` patterns.
///
/// **Why is this bad?** These can be written as the shorter `a op= b`.
///
/// **Known problems:** While forbidden by the spec, `OpAssign` traits may have
/// implementations that differ from the regular `Op` impl.
///
/// **Example:**
/// ```rust
/// let mut a = 5;
/// ...
/// a = a + b;
/// ```
declare_lint! {
    pub ASSIGN_OP_PATTERN,
    Warn,
    "assigning the result of an operation on a variable to that same variable"
}

/// **What it does:** Checks for `a op= a op b` or `a op= b op a` patterns.
///
/// **Why is this bad?** Most likely these are bugs where one meant to write `a op= b`.
///
/// **Known problems:** Someone might actually mean `a op= a op b`, but that
/// should rather be written as `a = (2 * a) op b` where applicable.
///
/// **Example:**
/// ```rust
/// let mut a = 5;
/// ...
/// a += a + b;
/// ```
declare_lint! {
    pub MISREFACTORED_ASSIGN_OP,
    Warn,
    "having a variable on both sides of an assign op"
}

#[derive(Copy, Clone, Default)]
pub struct AssignOps;

impl LintPass for AssignOps {
    fn get_lints(&self) -> LintArray {
        lint_array!(ASSIGN_OPS, ASSIGN_OP_PATTERN, MISREFACTORED_ASSIGN_OP)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for AssignOps {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
        match expr.node {
            hir::ExprAssignOp(op, ref lhs, ref rhs) => {
                span_lint_and_then(cx, ASSIGN_OPS, expr.span, "assign operation detected", |db| {
                    let lhs = &sugg::Sugg::hir(cx, lhs, "..");
                    let rhs = &sugg::Sugg::hir(cx, rhs, "..");

                    db.span_suggestion(expr.span,
                                       "replace it with",
                                       format!("{} = {}", lhs, sugg::make_binop(higher::binop(op.node), lhs, rhs)));
                });
                if let hir::ExprBinary(binop, ref l, ref r) = rhs.node {
                    if op.node == binop.node {
                        let lint = |assignee: &hir::Expr, rhs: &hir::Expr| {
                            let ty = cx.tcx.tables().expr_ty(assignee);
                            if ty.walk_shallow().next().is_some() {
                                return; // implements_trait does not work with generics
                            }
                            let rty = cx.tcx.tables().expr_ty(rhs);
                            if rty.walk_shallow().next().is_some() {
                                return; // implements_trait does not work with generics
                            }
                            span_lint_and_then(cx,
                                               MISREFACTORED_ASSIGN_OP,
                                               expr.span,
                                               "variable appears on both sides of an assignment operation",
                                               |db| {
                                if let (Some(snip_a), Some(snip_r)) =
                                    (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span)) {
                                    db.span_suggestion(expr.span,
                                                       "replace it with",
                                                       format!("{} {}= {}", snip_a, op.node.as_str(), snip_r));
                                }
                            });
                        };
                        // lhs op= l op r
                        if SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, l) {
                            lint(lhs, r);
                        }
                        // lhs op= l commutative_op r
                        if is_commutative(op.node) && SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, r) {
                            lint(lhs, l);
                        }
                    }
                }
            },
            hir::ExprAssign(ref assignee, ref e) => {
                if let hir::ExprBinary(op, ref l, ref r) = e.node {
                    let lint = |assignee: &hir::Expr, rhs: &hir::Expr| {
                        let ty = cx.tcx.tables().expr_ty(assignee);
                        if ty.walk_shallow().next().is_some() {
                            return; // implements_trait does not work with generics
                        }
                        let rty = cx.tcx.tables().expr_ty(rhs);
                        if rty.walk_shallow().next().is_some() {
                            return; // implements_trait does not work with generics
                        }
                        macro_rules! ops {
                            ($op:expr,
                             $cx:expr,
                             $ty:expr,
                             $rty:expr,
                             $($trait_name:ident:$full_trait_name:ident),+) => {
                                match $op {
                                    $(hir::$full_trait_name => {
                                        let [krate, module] = ::utils::paths::OPS_MODULE;
                                        let path = [krate, module, concat!(stringify!($trait_name), "Assign")];
                                        let trait_id = if let Some(trait_id) = get_trait_def_id($cx, &path) {
                                            trait_id
                                        } else {
                                            return; // useless if the trait doesn't exist
                                        };
                                        // check that we are not inside an `impl AssignOp` of this exact operation
                                        let parent_fn = cx.tcx.map.get_parent(e.id);
                                        let parent_impl = cx.tcx.map.get_parent(parent_fn);
                                        // the crate node is the only one that is not in the map
                                        if_let_chain!{[
                                            parent_impl != ast::CRATE_NODE_ID,
                                            let hir::map::Node::NodeItem(item) = cx.tcx.map.get(parent_impl),
                                            let hir::Item_::ItemImpl(_, _, _, Some(ref trait_ref), _, _) = item.node,
                                            trait_ref.path.def.def_id() == trait_id
                                        ], { return; }}
                                        implements_trait($cx, $ty, trait_id, vec![$rty])
                                    },)*
                                    _ => false,
                                }
                            }
                        }
                        if ops!(op.node,
                                cx,
                                ty,
                                rty,
                                Add: BiAdd,
                                Sub: BiSub,
                                Mul: BiMul,
                                Div: BiDiv,
                                Rem: BiRem,
                                And: BiAnd,
                                Or: BiOr,
                                BitAnd: BiBitAnd,
                                BitOr: BiBitOr,
                                BitXor: BiBitXor,
                                Shr: BiShr,
                                Shl: BiShl) {
                            span_lint_and_then(cx,
                                               ASSIGN_OP_PATTERN,
                                               expr.span,
                                               "manual implementation of an assign operation",
                                               |db| {
                                if let (Some(snip_a), Some(snip_r)) =
                                    (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span)) {
                                    db.span_suggestion(expr.span,
                                                       "replace it with",
                                                       format!("{} {}= {}", snip_a, op.node.as_str(), snip_r));
                                }
                            });
                        }
                    };
                    // a = a op b
                    if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, l) {
                        lint(assignee, r);
                    }
                    // a = b commutative_op a
                    if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, r) {
                        match op.node {
                            hir::BiAdd | hir::BiMul | hir::BiAnd | hir::BiOr | hir::BiBitXor | hir::BiBitAnd |
                            hir::BiBitOr => {
                                lint(assignee, l);
                            },
                            _ => {},
                        }
                    }
                }
            },
            _ => {},
        }
    }
}

fn is_commutative(op: hir::BinOp_) -> bool {
    use rustc::hir::BinOp_::*;
    match op {
        BiAdd | BiMul | BiAnd | BiOr | BiBitXor | BiBitAnd | BiBitOr | BiEq | BiNe => true,
        BiSub | BiDiv | BiRem | BiShl | BiShr | BiLt | BiLe | BiGe | BiGt => false,
    }
}