Module clap::_derive

source ·
Available on crate feature unstable-doc only.
Expand description

Documentation: Derive Reference

  1. Overview
  2. Attributes
    1. Terminology
    2. Command Attributes
    3. ArgGroup Attributes
    4. Arg Attributes
    5. ValueEnum Attributes
    6. Possible Value Attributes
  3. Arg Types
  4. Doc Comments
  5. Mixing Builder and Derive APIs
  6. Tips

Overview

To derive clap types, you need to enable the derive feature flag.

Example:

use clap::Parser;

/// Simple program to greet a person
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
    /// Name of the person to greet
    #[arg(short, long)]
    name: String,

    /// Number of times to greet
    #[arg(short, long, default_value_t = 1)]
    count: u8,
}

fn main() {
    let args = Args::parse();

    for _ in 0..args.count {
        println!("Hello {}!", args.name)
    }
}

Let’s start by breaking down the anatomy of the derive attributes:

use clap::{Parser, Args, Subcommand, ValueEnum};

/// Doc comment
#[derive(Parser)]
#[command(CMD ATTRIBUTE)]
#[group(GROUP ATTRIBUTE)]
struct Cli {
    /// Doc comment
    #[arg(ARG ATTRIBUTE)]
    field: UserType,

    #[arg(value_enum, ARG ATTRIBUTE...)]
    field: EnumValues,

    #[command(flatten)]
    delegate: Struct,

    #[command(subcommand)]
    command: Command,
}

/// Doc comment
#[derive(Args)]
#[command(PARENT CMD ATTRIBUTE)]
#[group(GROUP ATTRIBUTE)]
struct Struct {
    /// Doc comment
    #[command(ARG ATTRIBUTE)]
    field: UserType,
}

/// Doc comment
#[derive(Subcommand)]
#[command(PARENT CMD ATTRIBUTE)]
enum Command {
    /// Doc comment
    #[command(CMD ATTRIBUTE)]
    Variant1(Struct),

    /// Doc comment
    #[command(CMD ATTRIBUTE)]
    Variant2 {
        /// Doc comment
        #[arg(ARG ATTRIBUTE)]
        field: UserType,
    }
}

/// Doc comment
#[derive(ValueEnum)]
#[value(VALUE ENUM ATTRIBUTE)]
enum EnumValues {
    /// Doc comment
    #[value(POSSIBLE VALUE ATTRIBUTE)]
    Variant1,
}

fn main() {
    let cli = Cli::parse();
}

Traits:

  • Parser parses arguments into a struct (arguments) or enum (subcommands).
    • Args allows defining a set of re-usable arguments that get merged into their parent container.
    • Subcommand defines available subcommands.
    • Subcommand arguments can be defined in a struct-variant or automatically flattened with a tuple-variant.
  • ValueEnum allows parsing a value directly into an enum, erroring on unsupported values.
    • The derive doesn’t work on enums that contain non-unit variants, unless they are skipped

See also the derive tutorial and cookbook

Attributes

Terminology

Raw attributes are forwarded directly to the underlying clap builder. Any Command, Arg, or PossibleValue method can be used as an attribute.

Raw attributes come in two different syntaxes:

#[arg(
    global = true, // name = arg form, neat for one-arg methods
    required_if_eq("out", "file") // name(arg1, arg2, ...) form.
)]
  • method = arg can only be used for methods which take only one argument.
  • method(arg1, arg2) can be used with any method.

As long as method_name is not one of the magical methods it will be translated into a mere method call.

Magic attributes have post-processing done to them, whether that is

  • Providing of defaults
  • Special behavior is triggered off of it

Magic attributes are more constrained in the syntax they support, usually just <attr> = <value> though some use <attr>(<value>) instead. See the specific magic attributes documentation for details. This allows users to access the raw behavior of an attribute via <attr>(<value>) syntax.

NOTE: Some attributes are inferred from Arg Types and Doc Comments. Explicit attributes take precedence over inferred attributes.

Command Attributes

These correspond to a Command which is used for both top-level parsers and when defining subcommands.

Raw attributes: Any Command method can also be used as an attribute, see Terminology for syntax.

  • e.g. #[command(arg_required_else_help(true))] would translate to cmd.arg_required_else_help(true)

Magic attributes:

  • name = <expr>: Command::name
  • version [= <expr>]: Command::version
    • When not present: no version set
    • Without <expr>: defaults to crate version
  • author [= <expr>]: Command::author
    • When not present: no author set
    • Without <expr>: defaults to crate authors
  • about [= <expr>]: Command::about
    • When not present: Doc comment summary
    • Without <expr>: crate description (Parser container)
      • TIP: When a doc comment is also present, you most likely want to add #[arg(long_about = None)] to clear the doc comment so only about gets shown with both -h and --help.
  • long_about[ = <expr>]: Command::long_about
    • When not present: Doc comment if there is a blank line, else nothing
    • When present without a value: Doc comment
  • verbatim_doc_comment: Minimizes pre-processing when converting doc comments to about / long_about
  • next_display_order: Command::next_display_order
  • next_help_heading: Command::next_help_heading
    • When flattening Args, this is scoped to just the args in this struct and any struct flattened into it
  • rename_all = <string_literal>: Override default field / variant name case conversion for Command::name / Arg::id
    • When not present: "kebab-case"
    • Available values: "camelCase", "kebab-case", "PascalCase", "SCREAMING_SNAKE_CASE", "snake_case", "lower", "UPPER", "verbatim"
  • rename_all_env = <string_literal>: Override default field name case conversion for env variables for Arg::env
    • When not present: "SCREAMING_SNAKE_CASE"
    • Available values: "camelCase", "kebab-case", "PascalCase", "SCREAMING_SNAKE_CASE", "snake_case", "lower", "UPPER", "verbatim"

And for Subcommand variants:

  • skip: Ignore this variant
  • flatten: Delegates to the variant for more subcommands (must implement Subcommand)
  • subcommand: Nest subcommands under the current set of subcommands (must implement Subcommand)
  • external_subcommand: Command::allow_external_subcommand(true)
    • Variant must be either Variant(Vec<String>) or Variant(Vec<OsString>)

And for Args fields:

  • flatten: Delegates to the field for more arguments (must implement Args)
    • Only next_help_heading can be used with flatten. See clap-rs/clap#3269 for why arg attributes are not generally supported.
    • Tip: Though we do apply a flattened Args’s Parent Command Attributes, this makes reuse harder. Generally prefer putting the cmd attributes on the Parser or on the flattened field.
  • subcommand: Delegates definition of subcommands to the field (must implement Subcommand)
    • When Option<T>, the subcommand becomes optional

ArgGroup Attributes

These correspond to the ArgGroup which is implicitly created for each Args derive.

Raw attributes: Any ArgGroup method can also be used as an attribute, see Terminology for syntax.

  • e.g. #[group(required = true)] would translate to arg_group.required(true)

Magic attributes:

  • id = <expr>: ArgGroup::id
    • When not present: struct’s name is used
  • skip [= <expr>]: Ignore this field, filling in with <expr>
    • Without <expr>: fills the field with Default::default()

Arg Attributes

These correspond to a Arg.

Raw attributes: Any Arg method can also be used as an attribute, see Terminology for syntax.

  • e.g. #[arg(max_values(3))] would translate to arg.max_values(3)

Magic attributes:

  • id = <expr>: Arg::id
    • When not present: field’s name is used
  • value_parser [= <expr>]: Arg::value_parser
    • When not present: will auto-select an implementation based on the field type using value_parser!
  • action [= <expr>]: Arg::action
    • When not present: will auto-select an action based on the field type
  • help = <expr>: Arg::help
  • long_help[ = <expr>]: Arg::long_help
    • When not present: Doc comment if there is a blank line, else nothing
    • When present without a value: Doc comment
  • verbatim_doc_comment: Minimizes pre-processing when converting doc comments to help / long_help
  • short [= <char>]: Arg::short
    • When not present: no short set
    • Without <char>: defaults to first character in the case-converted field name
  • long [= <str>]: Arg::long
    • When not present: no long set
    • Without <str>: defaults to the case-converted field name
  • env [= <str>]: Arg::env (needs env feature enabled)
    • When not present: no env set
    • Without <str>: defaults to the case-converted field name
  • from_global: Read a Arg::global argument (raw attribute), regardless of what subcommand you are in
  • value_enum: Parse the value using the ValueEnum
  • skip [= <expr>]: Ignore this field, filling in with <expr>
    • Without <expr>: fills the field with Default::default()
  • default_value = <str>: Arg::default_value and Arg::required(false)
  • default_value_t [= <expr>]: Arg::default_value and Arg::required(false)
    • Requires std::fmt::Display that roundtrips correctly with the Arg::value_parser or #[arg(value_enum)]
    • Without <expr>, relies on Default::default()
  • default_values_t = <expr>: Arg::default_values and Arg::required(false)
    • Requires field arg to be of type Vec<T> and T to implement std::fmt::Display or #[arg(value_enum)]
    • <expr> must implement IntoIterator<T>
  • default_value_os_t [= <expr>]: Arg::default_value_os and Arg::required(false)
    • Requires std::convert::Into<OsString> or #[arg(value_enum)]
    • Without <expr>, relies on Default::default()
  • default_values_os_t = <expr>: Arg::default_values_os and Arg::required(false)
    • Requires field arg to be of type Vec<T> and T to implement std::convert::Into<OsString> or #[arg(value_enum)]
    • <expr> must implement IntoIterator<T>

ValueEnum Attributes

  • rename_all = <string_literal>: Override default field / variant name case conversion for PossibleValue::new
    • When not present: "kebab-case"
    • Available values: "camelCase", "kebab-case", "PascalCase", "SCREAMING_SNAKE_CASE", "snake_case", "lower", "UPPER", "verbatim"

Possible Value Attributes

These correspond to a PossibleValue.

Raw attributes: Any PossibleValue method can also be used as an attribute, see Terminology for syntax.

  • e.g. #[value(alias("foo"))] would translate to pv.alias("foo")

Magic attributes:

Arg Types

clap assumes some intent based on the type used:

TypeEffectImplies
()user-defined.action(ArgAction::Set).required(false)
boolflag.action(ArgAction::SetTrue)
Option<T>optional argument.action(ArgAction::Set).required(false)
Option<Option<T>>optional value for optional argument.action(ArgAction::Set).required(false).num_args(0..=1)
Trequired argument.action(ArgAction::Set).required(!has_default)
Vec<T>0.. occurrences of argument.action(ArgAction::Append).required(false)
Option<Vec<T>>0.. occurrences of argument.action(ArgAction::Append).required(false)

In addition, .value_parser(value_parser!(T)) is called for each field.

Notes:

  • For custom type behavior, you can override the implied attributes/settings and/or set additional ones
    • To force any inferred type (like Vec<T>) to be treated as T, you can refer to the type by another means, like using std::vec::Vec instead of Vec. For improving this, see #4626.
  • Option<Vec<T>> will be None instead of vec![] if no arguments are provided.
    • This gives the user some flexibility in designing their argument, like with num_args(0..)

Doc Comments

In clap, help messages for the whole binary can be specified via Command::about and Command::long_about while help messages for individual arguments can be specified via Arg::help and Arg::long_help.

long_* variants are used when user calls the program with --help and “short” variants are used with -h flag.


#[derive(Parser)]
#[command(about = "I am a program and I work, just pass `-h`", long_about = None)]
struct Foo {
    #[arg(short, help = "Pass `-h` and you'll see me!")]
    bar: String,
}

For convenience, doc comments can be used instead of raw methods (this example works exactly like the one above):


#[derive(Parser)]
/// I am a program and I work, just pass `-h`
struct Foo {
    /// Pass `-h` and you'll see me!
    bar: String,
}

NOTE: Attributes have priority over doc comments!

Top level doc comments always generate Command::about/long_about calls! If you really want to use the Command::about/long_about methods (you likely don’t), use the about / long_about attributes to override the calls generated from the doc comment. To clear long_about, you can use #[command(long_about = None)].

Pre-processing

#[derive(Parser)]
/// Hi there, I'm Robo!
///
/// I like beeping, stumbling, eating your electricity,
/// and making records of you singing in a shower.
/// Pay up, or I'll upload it to youtube!
struct Robo {
    /// Call my brother SkyNet.
    ///
    /// I am artificial superintelligence. I won't rest
    /// until I'll have destroyed humanity. Enjoy your
    /// pathetic existence, you mere mortals.
    #[arg(long, action)]
    kill_all_humans: bool,
}

A doc comment consists of three parts:

  • Short summary
  • A blank line (whitespace only)
  • Detailed description, all the rest

The summary corresponds with Command::about / Arg::help. When a blank line is present, the whole doc comment will be passed to Command::long_about / Arg::long_help. Or in other words, a doc may result in just a Command::about / Arg::help or Command::about / Arg::help and Command::long_about / Arg::long_help

In addition, when verbatim_doc_comment is not present, clap applies some preprocessing, including:

  • Strip leading and trailing whitespace from every line, if present.

  • Strip leading and trailing blank lines, if present.

  • Interpret each group of non-empty lines as a word-wrapped paragraph.

    We replace newlines within paragraphs with spaces to allow the output to be re-wrapped to the terminal width.

  • Strip any excess blank lines so that there is exactly one per paragraph break.

  • If the first paragraph ends in exactly one period, remove the trailing period (i.e. strip trailing periods but not trailing ellipses).

Sometimes you don’t want this preprocessing to apply, for example the comment contains some ASCII art or markdown tables, you would need to preserve LFs along with blank lines and the leading/trailing whitespace. When you pass use the verbatim_doc_comment magic attribute, you preserve them.

Note: Keep in mind that verbatim_doc_comment will still

  • Remove one leading space from each line, even if this attribute is present, to allow for a space between /// and the content.
  • Remove leading and trailing blank lines

Mixing Builder and Derive APIs

The builder and derive APIs do not live in isolation. They can work together, which is especially helpful if some arguments can be specified at compile-time while others must be specified at runtime.

Using derived arguments in a builder application

When using the derive API, you can #[command(flatten)] a struct deriving Args into a struct deriving Args or Parser. This example shows how you can augment a Command instance created using the builder API with Args created using the derive API.

It uses the Args::augment_args method to add the arguments to the Command instance.

Crates such as clap-verbosity-flag provide structs that implement Args. Without the technique shown in this example, it would not be possible to use such crates with the builder API.

For example:

use clap::{arg, Args, Command, FromArgMatches as _};

#[derive(Args, Debug)]
struct DerivedArgs {
    #[arg(short, long)]
    derived: bool,
}

fn main() {
    let cli = Command::new("CLI").arg(arg!(-b - -built).action(clap::ArgAction::SetTrue));
    // Augment built args with derived args
    let cli = DerivedArgs::augment_args(cli);

    let matches = cli.get_matches();
    println!("Value of built: {:?}", matches.get_flag("built"));
    println!(
        "Value of derived via ArgMatches: {:?}",
        matches.get_flag("derived")
    );

    // Since DerivedArgs implements FromArgMatches, we can extract it from the unstructured ArgMatches.
    // This is the main benefit of using derived arguments.
    let derived_matches = DerivedArgs::from_arg_matches(&matches)
        .map_err(|err| err.exit())
        .unwrap();
    println!("Value of derived: {derived_matches:#?}");
}

Using derived subcommands in a builder application

When using the derive API, you can use #[command(subcommand)] inside the struct to add subcommands. The type of the field is usually an enum that derived Parser. However, you can also add the subcommands in that enum to a Command instance created with the builder API.

It uses the Subcommand::augment_subcommands method to add the subcommands to the Command instance.

For example:

use clap::{Command, FromArgMatches as _, Parser, Subcommand as _};

#[derive(Parser, Debug)]
enum Subcommands {
    Derived {
        #[arg(short, long)]
        derived_flag: bool,
    },
}

fn main() {
    let cli = Command::new("Built CLI");
    // Augment with derived subcommands
    let cli = Subcommands::augment_subcommands(cli);

    let matches = cli.get_matches();
    let derived_subcommands = Subcommands::from_arg_matches(&matches)
        .map_err(|err| err.exit())
        .unwrap();
    println!("Derived subcommands: {derived_subcommands:#?}");
}

Adding hand-implemented subcommands to a derived application

When using the derive API, you can use #[command(subcommand)] inside the struct to add subcommands. The type of the field is usually an enum that derived Parser. However, you can also implement the Subcommand trait manually on this enum (or any other type) and it can still be used inside the struct created with the derive API. The implementation of the Subcommand trait will use the builder API to add the subcommands to the Command instance created behind the scenes for you by the derive API.

Notice how in the previous example we used augment_subcommands on an enum that derived Parser, whereas now we implement augment_subcommands ourselves, but the derive API calls it automatically since we used the #[command(subcommand)] attribute.

For example:

use clap::error::{Error, ErrorKind};
use clap::{ArgMatches, Args as _, Command, FromArgMatches, Parser, Subcommand};

#[derive(Parser, Debug)]
struct AddArgs {
    name: Vec<String>,
}
#[derive(Parser, Debug)]
struct RemoveArgs {
    #[arg(short, long)]
    force: bool,
    name: Vec<String>,
}

#[derive(Debug)]
enum CliSub {
    Add(AddArgs),
    Remove(RemoveArgs),
}

impl FromArgMatches for CliSub {
    fn from_arg_matches(matches: &ArgMatches) -> Result<Self, Error> {
        match matches.subcommand() {
            Some(("add", args)) => Ok(Self::Add(AddArgs::from_arg_matches(args)?)),
            Some(("remove", args)) => Ok(Self::Remove(RemoveArgs::from_arg_matches(args)?)),
            Some((_, _)) => Err(Error::raw(
                ErrorKind::InvalidSubcommand,
                "Valid subcommands are `add` and `remove`",
            )),
            None => Err(Error::raw(
                ErrorKind::MissingSubcommand,
                "Valid subcommands are `add` and `remove`",
            )),
        }
    }
    fn update_from_arg_matches(&mut self, matches: &ArgMatches) -> Result<(), Error> {
        match matches.subcommand() {
            Some(("add", args)) => *self = Self::Add(AddArgs::from_arg_matches(args)?),
            Some(("remove", args)) => *self = Self::Remove(RemoveArgs::from_arg_matches(args)?),
            Some((_, _)) => {
                return Err(Error::raw(
                    ErrorKind::InvalidSubcommand,
                    "Valid subcommands are `add` and `remove`",
                ))
            }
            None => (),
        };
        Ok(())
    }
}

impl Subcommand for CliSub {
    fn augment_subcommands(cmd: Command) -> Command {
        cmd.subcommand(AddArgs::augment_args(Command::new("add")))
            .subcommand(RemoveArgs::augment_args(Command::new("remove")))
            .subcommand_required(true)
    }
    fn augment_subcommands_for_update(cmd: Command) -> Command {
        cmd.subcommand(AddArgs::augment_args(Command::new("add")))
            .subcommand(RemoveArgs::augment_args(Command::new("remove")))
            .subcommand_required(true)
    }
    fn has_subcommand(name: &str) -> bool {
        matches!(name, "add" | "remove")
    }
}

#[derive(Parser, Debug)]
struct Cli {
    #[arg(short, long)]
    top_level: bool,
    #[command(subcommand)]
    subcommand: CliSub,
}

fn main() {
    let args = Cli::parse();
    println!("{args:#?}");
}

Flattening hand-implemented args into a derived application

When using the derive API, you can use #[command(flatten)] inside the struct to add arguments as if they were added directly to the containing struct. The type of the field is usually an struct that derived Args. However, you can also implement the Args trait manually on this struct (or any other type) and it can still be used inside the struct created with the derive API. The implementation of the Args trait will use the builder API to add the arguments to the Command instance created behind the scenes for you by the derive API.

Notice how in the previous example we used augment_args on the struct that derived Parser, whereas now we implement augment_args ourselves, but the derive API calls it automatically since we used the #[command(flatten)] attribute.

For example:

use clap::error::Error;
use clap::{Arg, ArgAction, ArgMatches, Args, Command, FromArgMatches, Parser};

#[derive(Debug)]
struct CliArgs {
    foo: bool,
    bar: bool,
    quuz: Option<String>,
}

impl FromArgMatches for CliArgs {
    fn from_arg_matches(matches: &ArgMatches) -> Result<Self, Error> {
        let mut matches = matches.clone();
        Self::from_arg_matches_mut(&mut matches)
    }
    fn from_arg_matches_mut(matches: &mut ArgMatches) -> Result<Self, Error> {
        Ok(Self {
            foo: matches.get_flag("foo"),
            bar: matches.get_flag("bar"),
            quuz: matches.remove_one::<String>("quuz"),
        })
    }
    fn update_from_arg_matches(&mut self, matches: &ArgMatches) -> Result<(), Error> {
        let mut matches = matches.clone();
        self.update_from_arg_matches_mut(&mut matches)
    }
    fn update_from_arg_matches_mut(&mut self, matches: &mut ArgMatches) -> Result<(), Error> {
        self.foo |= matches.get_flag("foo");
        self.bar |= matches.get_flag("bar");
        if let Some(quuz) = matches.remove_one::<String>("quuz") {
            self.quuz = Some(quuz);
        }
        Ok(())
    }
}

impl Args for CliArgs {
    fn augment_args(cmd: Command) -> Command {
        cmd.arg(
            Arg::new("foo")
                .short('f')
                .long("foo")
                .action(ArgAction::SetTrue),
        )
        .arg(
            Arg::new("bar")
                .short('b')
                .long("bar")
                .action(ArgAction::SetTrue),
        )
        .arg(
            Arg::new("quuz")
                .short('q')
                .long("quuz")
                .action(ArgAction::Set),
        )
    }
    fn augment_args_for_update(cmd: Command) -> Command {
        cmd.arg(
            Arg::new("foo")
                .short('f')
                .long("foo")
                .action(ArgAction::SetTrue),
        )
        .arg(
            Arg::new("bar")
                .short('b')
                .long("bar")
                .action(ArgAction::SetTrue),
        )
        .arg(
            Arg::new("quuz")
                .short('q')
                .long("quuz")
                .action(ArgAction::Set),
        )
    }
}

#[derive(Parser, Debug)]
struct Cli {
    #[arg(short, long)]
    top_level: bool,
    #[command(flatten)]
    more_args: CliArgs,
}

fn main() {
    let args = Cli::parse();
    println!("{args:#?}");
}

Tips

Modules