1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
//! # `cint` - `c`olor `int`erop
//!
//! This library provides a lean, minimal, and stable set of types
//! for color interoperation between crates in Rust. Its goal is to serve the same
//! function that [`mint`](https://docs.rs/mint/) provides for (linear algebra) math types.
//! It does not actually provide any conversion, math, etc. for these types, but rather
//! serves as a stable interface that multiple libraries can rely on and then convert
//! to their own internal representations to actually use. It is also `#![no_std]`.
//! [`bytemuck`](https://docs.rs/bytemuck/) impls are provided with the `bytemuck` feature.
//!
//! # How to Use
//!
//! If you have no idea about color management or encoding principles but you want to
//! use this crate in your own, here's a *very basic* rundown.
//!
//! If you have a color that you loaded from an 8-bit format like a PNG, JPG, etc.,
//! **or** if you have a color that you picked from some sort of online color picker
//! or in Photoshop or Aseprite, then what you have is almost certainly an [`EncodedSrgb<u8>`]
//! color. If you have a color that you loaded
//! from a similar format but has floating point values instead of `u8` ints, then you
//! almost certainly instead have a [`EncodedSrgb<f32>`] color.
//!
//! If you "linearized" or performed "inverse gamma correction" on such a color, then you instead
//! might have a [`LinearSrgb<f32>`].
//!
//! If you are more familiar with color encoding, then you'll find a collection of other color spaces
//! represented, as well as the generic color types (like [`GenericColor3<ComponentTy>`]) which
//! can be used if the color space you wish to use is not represented.
//!
//! All spaces are also collected into the [`Spaces`] enum, and you can get the variant represented
//! by any of the concrete color types by taking advantage of the [`ColorType`]'s `SPACE` associated
//! type, i.e. `EncodedSrgb::SPACE` will give `Spaces::EncodedSrgb`.
//!
//! The [`ColorInterop`] trait exists to provide a "canonical" transformation to and from `cint` types.
//! Since it is often possible to convert a color to and from multiple `cint` types, and because of
//! how the Rust type inference system works, it can often be inconvenient to chain together `from`
//! or `into` calls from the [From]/[Into] trait. [`ColorInterop`] solves this by providing a strongly
//! typed "reference" conversion to/from `cint` types. This way, you can do things like:
//!
//! ```rust
//! let color_crate1 = color_crate2.into_cint().into();
//! // or
//! let color_crate2 = ColorCrate2::from_cint(color_crate1.into());
//! ```
//!
//! which would otherwise be quite inconvenient. **Provider crates** (those that provide their own color
//! types) should implement the relevant [`From`]/[`Into`] implementations to and from `cint` types, and
//! also the [ColorInterop] trait once for each color type. The [`into_cint`][ColorInterop::into_cint] and
//! [`from_cint`][ColorInterop::from_cint] methods will then be provided automatically.
//!
//! ## Colors with alpha channels
//!
//! `cint` provides the [`Alpha<ColorTy>`] and [`PremultipliedAlpha<ColorTy>`]
//! structs, which are generic over the inner `ColorTy`.
//! To represent an [`EncodedSrgb<u8>`] color with a premultiplied alpha component,
//! you'd use [`PremultipliedAlpha<EncodedSrgb<u8>>`]. If, on the other hand, you want to represent
//! an [`Oklab<f32>`] color with an independent alpha component, you'd use [`Alpha<Oklab<f32>>`]
#![no_std]
#![allow(unsafe_code)]

#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};

/// A trait used to simpify the interface of the [`Alpha`] and [`PremultipliedAlpha`] types and
/// allow use with [`Spaces`] enum.
pub trait ColorType {
    type ComponentTy: Copy;
    const SPACE: Spaces;
    const NUM_COMPONENTS: usize;
}

/// A trait that should be implemented by provider crates on their local color types so that you can call
/// `color.to_cint()` and `Color::from_cint(cint_color)`.
///
/// Provider crates should also do relevant `From`/`Into` impls, but [`ColorInterop`] provides a "canonical"
/// transformation to the closest `cint` color type.
pub trait ColorInterop
where
    Self: Into<<Self as ColorInterop>::CintTy>,
{
    type CintTy: Into<Self>;

    /// Convert `self` into its canonical `cint` type.
    fn from_cint(col: Self::CintTy) -> Self {
        col.into()
    }

    /// Create a `Self` from its canonical `cint` type.
    fn into_cint(self) -> Self::CintTy {
        self.into()
    }
}

/// A color with an alpha component.
///
/// The color components and alpha component are completely separate.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
#[repr(C)]
pub struct Alpha<ColorTy: ColorType> {
    /// The contained color, which is completely separate from the `alpha` value.
    pub color: ColorTy,
    /// The alpha component.
    pub alpha: ColorTy::ComponentTy,
}

impl<BaseColorTy: ColorType> ColorType for Alpha<BaseColorTy> {
    type ComponentTy = BaseColorTy::ComponentTy;
    const SPACE: Spaces = BaseColorTy::SPACE;
    const NUM_COMPONENTS: usize = BaseColorTy::NUM_COMPONENTS + 1;
}

#[cfg(feature = "bytemuck")]
unsafe impl<ColorTy: ColorType + Zeroable> Zeroable for Alpha<ColorTy> {}
#[cfg(feature = "bytemuck")]
unsafe impl<ColorTy: ColorType + Pod> Pod for Alpha<ColorTy> {}

/// A premultiplied color with an alpha component.
///
/// The color components have been premultiplied by the alpha component.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub struct PremultipliedAlpha<ColorTy: ColorType> {
    /// The contained color, which has been premultiplied with `alpha`
    pub color: ColorTy,
    /// The alpha component.
    pub alpha: ColorTy::ComponentTy,
}

impl<BaseColorTy: ColorType> ColorType for PremultipliedAlpha<BaseColorTy> {
    type ComponentTy = BaseColorTy::ComponentTy;
    const SPACE: Spaces = BaseColorTy::SPACE;
    const NUM_COMPONENTS: usize = BaseColorTy::NUM_COMPONENTS + 1;
}

#[cfg(feature = "bytemuck")]
unsafe impl<ColorTy: ColorType + Zeroable> Zeroable for PremultipliedAlpha<ColorTy> {}
#[cfg(feature = "bytemuck")]
unsafe impl<ColorTy: ColorType + Pod> Pod for PremultipliedAlpha<ColorTy> {}

macro_rules! color_struct {
    {
        $(#[$doc:meta])*
        $name:ident<$default_component_ty:ty, $num_components:literal> {
            $($(#[$compdoc:meta])+
            $compname:ident,)+
        }
    } => {
        $(#[$doc])*
        #[repr(C)]
        #[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
        pub struct $name<ComponentTy=$default_component_ty> {
            $($(#[$compdoc])+
            pub $compname: ComponentTy,)+
        }

        impl<CTy: Clone + Copy> ColorType for $name<CTy> {
            type ComponentTy = CTy;
            const SPACE: Spaces = Spaces::$name;
            const NUM_COMPONENTS: usize = $num_components;
        }

        #[cfg(feature = "bytemuck")]
        unsafe impl<ComponentTy: Zeroable> Zeroable for $name<ComponentTy> {}
        #[cfg(feature = "bytemuck")]
        unsafe impl<ComponentTy: Pod> Pod for $name<ComponentTy> {}

        impl<ComponentTy> From<[ComponentTy; $num_components]> for $name<ComponentTy> {
            fn from([$($compname),+]: [ComponentTy; $num_components]) -> $name<ComponentTy> {
                $name {
                    $($compname,)+
                }
            }
        }

        #[allow(clippy::from_over_into)]
        impl<ComponentTy> Into<[ComponentTy; $num_components]> for $name<ComponentTy> {
            fn into(self) -> [ComponentTy; $num_components] {
                let $name {
                    $($compname,)+
                } = self;
                [$($compname),+]
            }
        }

        impl<ComponentTy> AsRef<[ComponentTy; $num_components]> for $name<ComponentTy> {
            fn as_ref(&self) -> &[ComponentTy; $num_components] {
                // SAFETY: same layout is guaranteed by repr C
                unsafe { &*(self as *const $name<ComponentTy> as *const [ComponentTy; $num_components]) }
            }
        }

        impl<ComponentTy> AsMut<[ComponentTy; $num_components]> for $name<ComponentTy> {
            fn as_mut(&mut self) -> &mut [ComponentTy; $num_components] {
                // SAFETY: same layout is guaranteed by repr C
                unsafe { &mut *(self as *mut $name<ComponentTy> as *mut [ComponentTy; $num_components]) }
            }
        }

        macro_rules! impl_alpha_traits {
            ($alphaty:ident) => {
                impl<ComponentTy: Copy> From<$alphaty<$name<ComponentTy>>> for $name<ComponentTy> {
                    fn from(col_alpha: $alphaty<$name<ComponentTy>>) -> $name<ComponentTy> {
                        col_alpha.color
                    }
                }

                impl<ComponentTy: Copy> From<[ComponentTy; $num_components + 1]> for $alphaty<$name<ComponentTy>> {
                    fn from([$($compname,)+ alpha]: [ComponentTy; $num_components + 1]) -> $alphaty<$name<ComponentTy>> {
                        $alphaty {
                            color: $name::from([$($compname,)+]),
                            alpha,
                        }
                    }
                }

                #[allow(clippy::from_over_into)]
                impl<ComponentTy: Copy> Into<[ComponentTy; $num_components + 1]> for $alphaty<$name<ComponentTy>> {
                    fn into(self) -> [ComponentTy; $num_components + 1] {
                        let $alphaty {
                            color,
                            alpha
                        } = self;

                        let $name {
                            $($compname,)+
                        } = color;

                        [$($compname,)+ alpha]
                    }
                }

                impl<ComponentTy: Copy> AsRef<[ComponentTy; $num_components + 1]> for $alphaty<$name<ComponentTy>> {
                    fn as_ref(&self) -> &[ComponentTy; $num_components + 1] {
                        // SAFETY: same layout is guaranteed by repr C
                        unsafe { &*(self as *const $alphaty<$name<ComponentTy>> as *const [ComponentTy; $num_components + 1]) }
                    }
                }

                impl<ComponentTy: Copy> AsMut<[ComponentTy; $num_components + 1]> for $alphaty<$name<ComponentTy>> {
                    fn as_mut(&mut self) -> &mut [ComponentTy; $num_components + 1] {
                        // SAFETY: same layout is guaranteed by repr C
                        unsafe { &mut *(self as *mut $alphaty<$name<ComponentTy>> as *mut [ComponentTy; $num_components + 1]) }
                    }
                }
            }
        }

        impl_alpha_traits!(Alpha);
        impl_alpha_traits!(PremultipliedAlpha);
    };
}

macro_rules! color_spaces {
    {
        $($(#[$space_doc:meta])*
        $space_name:ident<$default_component_ty:ty, $num_components:literal> {
            $($(#[$comp_doc:meta])+
            $comp_name:ident,)+
        })*
    } => {
        /// An enum with a variant for each of the color spaces
        /// supported by the library. Useful for tracking as metadata
        /// in something like an image type, and for runtime-determined color types.
        #[repr(u32)]
        #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
        pub enum Spaces {
            $(
                $(#[$space_doc])*
                $space_name,
            )*
        }

        impl Spaces {
            pub fn num_components(&self) -> usize {
                match *self {
                    $(
                        Self::$space_name => $num_components,
                    )*
                }
            }
        }

        $(
            color_struct! {
                $(#[$space_doc])*
                $space_name<$default_component_ty, $num_components> {
                    $( $(#[$comp_doc])+
                    $comp_name,)+
                }
            }
        )*
    }
}

color_spaces! {
    /// A color in the encoded sRGB color space.
    ///
    /// This color space uses the sRGB/Rec.709 primaries, D65 white point,
    /// and sRGB transfer functions. The encoded version is nonlinear, with the
    /// sRGB OETF, aka "gamma compensation", applied.
    EncodedSrgb<u8, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the linear (decoded) sRGB color space.
    ///
    /// This color space uses the sRGB/Rec.709 primaries, D65 white point,
    /// and sRGB transfer functions. This version is linear, with the
    /// sRGB EOTF, aka "inverse gamma compensation", applied in order to
    /// decode it from [`EncodedSrgb`]
    LinearSrgb<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the encoded Rec.709/BT.709 color space.
    ///
    /// This color space uses the BT.709 primaries, D65 white point,
    /// and BT.601 (reused in BT.709) transfer function. The encoded version is nonlinear, with the
    /// BT.601 OETF applied.
    EncodedRec709<u8, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the Rec.709/BT.709 color space.
    ///
    /// This color space uses the BT.709 primaries, D65 white point,
    /// and BT.601 (reused in BT.709) transfer function. This version is linear, without the
    /// BT.601 OETF applied.
    Rec709<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in a generic color space that can be represented by 3 components. The user
    /// is responsible for ensuring that the correct color space is respected.
    GenericColor3<f32, 3> {
        /// The first component.
        x,
        /// The second component.
        y,
        /// The third component.
        z,
    }

    /// A color in a generic color space that can be represented by 1 component. The user
    /// is responsible for ensuring that the correct color space is respected.
    GenericColor1<f32, 1> {
        /// The first component.
        x,
    }

    /// A single-channel CIE luminance.
    Luminance<f32, 1> {
        /// CIE luminance.
        l,
    }

    /// A single-channel CIE luma (non-linear transform from luminance).
    Luma<f32, 1> {
        /// CIE luminance.
        l,
    }

    /// A color in the ACEScg color space.
    ///
    /// This color space uses the ACES AP1 primaries and D60 white point.
    AcesCg<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the ACES 2065-1 color space.
    ///
    /// This color space uses the ACES AP0 primaries and D60 white point.
    Aces2065<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the ACEScc color space.
    ///
    /// This color space uses the ACES AP1 primaries and D60 white point
    /// and a pure logarithmic transfer function.
    AcesCc<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the ACEScct color space.
    ///
    /// This color space uses the ACES AP1 primaries and D60 white point
    /// and a logarithmic transfer function with a toe such that values
    /// are able to go negative.
    AcesCct<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the Display P3 (aka P3 D65) color space.
    ///
    /// This color space uses the P3 primaries and D65 white point
    /// and sRGB transfer functions. This version is linear,
    /// without the sRGB OETF applied.
    DisplayP3<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the Display P3 (aka P3 D65) color space.
    ///
    /// This color space uses the P3 primaries and D65 white point
    /// and sRGB transfer functions. This encoded version is nonlinear,
    /// with the sRGB OETF applied.
    EncodedDisplayP3<u8, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the DCI-P3 (aka P3 DCI and P3 D60) color space.
    ///
    /// If you are looking for the P3 which is used on new Apple displays, see
    /// [`DisplayP3`] instead.
    ///
    /// This color space uses the P3 primaries and D60 white point.
    DciP3<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the X'Y'Z' color space, a DCI specification used for digital cinema mastering.
    ///
    /// This color space uses the CIE XYZ primaries, with special DCI white point and pure 2.6 gamma encoding.
    DciXYZPrime<f32, 3> {
        /// The X' component.
        x,
        /// The Y' component.
        y,
        /// The Z' component.
        z,
    }

    /// A color in the BT.2020 color space.
    ///
    /// This color space uses the BT.2020 primaries and D65 white point.
    Bt2020<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the encoded BT.2020 color space.
    ///
    /// This color space uses the BT.2020 primaries and D65 white point and
    /// the BT.2020 transfer functions (equivalent to BT.601 transfer functions
    /// but with higher precision). This encoded version is nonlinear, with the
    /// BT.2020/BT.601 OETF applied.
    EncodedBt2020<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the BT.2100 color space.
    ///
    /// This color space uses the BT.2020 primaries and D65 white point.
    Bt2100<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the encoded BT.2100 color space with PQ (Perceptual Quantizer)
    /// transfer function.
    ///
    /// This color space uses the BT.2020 primaries and D65 white point and
    /// the ST 2084/"PQ" transfer function. It is nonlinear.
    EncodedBt2100PQ<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the encoded BT.2100 color space with HLG (Hybrid Log-Gamma)
    /// transfer function.
    ///
    /// This color space uses the BT.2020 primaries and D65 white point and
    /// the HLG transfer function. It is nonlinear.
    EncodedBt2100HLG<f32, 3> {
        /// The red component.
        r,
        /// The green component.
        g,
        /// The blue component.
        b,
    }

    /// A color in the ICtCp color space with PQ (Perceptual Quantizer)
    /// nonlinearity.
    ///
    /// This color space is based on the BT.2020 primaries and D65 white point,
    /// but is not an RGB color space. Instead it is a roughly perceptual color
    /// space meant to more efficiently encode HDR content.
    ICtCpPQ<f32, 3> {
        /// The I (intensity) component.
        i,
        /// The Ct (chroma-tritan) component.
        ct,
        /// The Cp (chroma-protan) component.
        cp,
    }

    /// A color in the ICtCp color space with HLG (Hybrid Log-Gamma)
    /// nonlinearity.
    ///
    /// This color space is based on the BT.2020 primaries and D65 white point,
    /// but is not an RGB color space. Instead it is a roughly perceptual color
    /// space meant to more efficiently encode HDR content.
    ICtCpHLG<f32, 3> {
        /// The I (intensity) component.
        i,
        /// The Ct (chroma-tritan) component.
        ct,
        /// The Cp (chroma-protan) component.
        cp,
    }

    /// A color in the CIE XYZ color space.
    ///
    /// This color space uses the CIE XYZ primaries and D65 white point.
    CieXYZ<f32, 3> {
        /// The X component.
        x,
        /// The Y component.
        y,
        /// The Z component.
        z,
    }

    /// A color in the CIE L\*a\*b\* color space.
    CieLab<f32, 3> {
        /// The L (lightness) component. Varies from 0 to 100.
        l,
        /// The a component, representing green-red chroma difference.
        a,
        /// The b component, representing blue-yellow chroma difference.
        b,
    }

    /// A color in the CIE L\*C\*h° color space.
    CieLCh<f32, 3> {
        /// The L (lightness) component. Varies from 0 to 100.
        l,
        /// The C (chroma) component. Varies from 0 to a hue dependent maximum.
        c,
        /// The h (hue) component. Varies from -PI to PI.
        h,
    }

    /// A color in the Oklab color space.
    Oklab<f32, 3> {
        /// The L (lightness) component. Varies from 0 to 1
        l,
        /// The a component, representing green-red chroma difference.
        a,
        /// The b component, representing blue-yellow chroma difference.
        b,
    }

    /// A color in the Oklch color space (a transformation from Oklab to LCh° coordinates).
    Oklch<f32, 3> {
        /// The L (lightness) component. Varies from 0 to 1.
        l,
        /// The C (chroma) component. Varies from 0 to a hue dependent maximum.
        c,
        /// The h (hue) component. Varies from -PI to PI.
        h,
    }

    /// A color in the HSL color space.
    ///
    /// Since HSL is a relative color space, it is required to know the RGB space which
    /// it was transformed from. We define this as the linear sRGB space, as that is
    /// the most common case.
    Hsl<f32, 3> {
        /// The H (hue) component. Varies from 0 to 1.
        h,
        /// The S (saturation) component. Varies from 0 to 1.
        s,
        /// The L (lightness) component. Varies from 0 to 1.
        l,
    }

    /// A color in the HSV color space.
    ///
    /// Since HSV is a relative color space, it is required to know the RGB space which
    /// it was transformed from. We define this as the linear sRGB space, as that is
    /// the most common case.
    Hsv<f32, 3> {
        /// The H (hue) component. Varies from 0 to 1.
        h,
        /// The S (saturation) component. Varies from 0 to 1.
        s,
        /// The V (value) component. Varies from 0 to 1.
        v,
    }

    /// A color in the YCbCr color space. See discussion of the difference between YCbCr, YUV, and
    /// YPbPr in [YCbCr Wikipedia article](https://en.wikipedia.org/wiki/YCbCr)
    ///
    /// Since YCbCr is a relative color space, it is required to know the RGB space which
    /// it was transformed from. We define this as being converted from the LinearSrgb color space.
    YCbCr<u8, 3> {
        /// The Y (luminance) component.
        y,
        /// The Cb (chroma-blue/yellow) component.
        cb,
        /// The Cr (chroma-red/green) component.
        cr,
    }

    /// A color in the Y'CbCr color space. See discussion of the difference between YCbCr, Y'CbCr,
    /// YUV, YPbPr, and Y'PbPr in the [YCbCr Wikipedia article](https://en.wikipedia.org/wiki/YCbCr)
    ///
    /// Since Y'CbCr is a relative color space, it is required to know the RGB space which
    /// it was transformed from. We define this as being converted from the EncodedSrgb color space.
    YPrimeCbCr<u8, 3> {
        /// The Y' (luma) component.
        y,
        /// The Cb (chroma-blue/yellow) component.
        cb,
        /// The Cr (chroma-red/green) component.
        cr,
    }

    /// A color in the YPbPr color space. See discussion of the difference between YCbCr,
    /// YUV, YPbPr, and Y'PbPr in the [YCbCr Wikipedia article](https://en.wikipedia.org/wiki/YCbCr)
    ///
    /// Since YPbPr is a relative color space, it is required to know the RGB space which
    /// it was transformed from. We define this as being converted from the LinearSrgb color space.
    YPbPr<f32, 3> {
        /// The Y (luminance) component.
        y,
        /// The Pb (chroma-blue/yellow) component.
        pb,
        /// The Pr (chroma-red/green) component.
        pr,
    }

    /// A color in the Y'PbPr color space. See discussion of the difference between YCbCr,
    /// YUV, YPbPr, and Y'PbPr in the [YCbCr Wikipedia article](https://en.wikipedia.org/wiki/YCbCr)
    ///
    /// Since Y'PbPr is a relative color space, it is required to know the RGB space which
    /// it was transformed from. We define this as being converted from the EncodedSrgb color space.
    YPrimePbPr<f32, 3> {
        /// The Y' (luma) component.
        y,
        /// The Pb (chroma-blue/yellow) component.
        pb,
        /// The Pr (chroma-red/green) component.
        pr,
    }

    /// A color in the YUV color space. See discussion of the difference between YCbCr, YUV, and
    /// YPbPr in [YCbCr Wikipedia article](https://en.wikipedia.org/wiki/YCbCr)
    Yuv<f32, 3> {
        /// The Y (luminance) component.
        y,
        /// The U (chroma-blue/yellow) component.
        u,
        /// The V (chroma-red/green) component.
        v,
    }

    /// A color in the YCxCz (also called YyCxCz) color space, originally defined in "Optimized
    /// universal color palette design for error diffusion" by B. W. Kolpatzik and C. A. Bouman.
    /// Can be thought of as a "linear CIE Lab".
    YCxCz<f32, 3> {
        /// The Yy (luminance) component.
        y,
        /// The Cx (chroma difference blue/yellow) component
        cx,
        /// The Cz (chroma difference red/green) component
        cz,
    }
}