1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use super::*;

use ciborium_io::Read;

/// An error that occurred while decoding
#[derive(Debug)]
pub enum Error<T> {
    /// An error occurred while reading bytes
    ///
    /// Contains the underlying error returned while reading.
    Io(T),

    /// An error occurred while parsing bytes
    ///
    /// Contains the offset into the stream where the syntax error occurred.
    Syntax(usize),
}

impl<T> From<T> for Error<T> {
    #[inline]
    fn from(value: T) -> Self {
        Self::Io(value)
    }
}

/// A decoder for deserializing CBOR items
///
/// This decoder manages the low-level decoding of CBOR items into `Header`
/// objects. It also contains utility functions for parsing segmented bytes
/// and text inputs.
pub struct Decoder<R: Read> {
    reader: R,
    offset: usize,
    buffer: Option<Title>,
}

impl<R: Read> From<R> for Decoder<R> {
    #[inline]
    fn from(value: R) -> Self {
        Self {
            reader: value,
            offset: 0,
            buffer: None,
        }
    }
}

impl<R: Read> Read for Decoder<R> {
    type Error = R::Error;

    #[inline]
    fn read_exact(&mut self, data: &mut [u8]) -> Result<(), Self::Error> {
        assert!(self.buffer.is_none());
        self.reader.read_exact(data)?;
        self.offset += data.len();
        Ok(())
    }
}

impl<R: Read> Decoder<R> {
    #[inline]
    fn pull_title(&mut self) -> Result<Title, Error<R::Error>> {
        if let Some(title) = self.buffer.take() {
            self.offset += title.1.as_ref().len() + 1;
            return Ok(title);
        }

        let mut prefix = [0u8; 1];
        self.read_exact(&mut prefix[..])?;

        let major = match prefix[0] >> 5 {
            0 => Major::Positive,
            1 => Major::Negative,
            2 => Major::Bytes,
            3 => Major::Text,
            4 => Major::Array,
            5 => Major::Map,
            6 => Major::Tag,
            7 => Major::Other,
            _ => unreachable!(),
        };

        let mut minor = match prefix[0] & 0b00011111 {
            x if x < 24 => Minor::This(x),
            24 => Minor::Next1([0; 1]),
            25 => Minor::Next2([0; 2]),
            26 => Minor::Next4([0; 4]),
            27 => Minor::Next8([0; 8]),
            31 => Minor::More,
            _ => return Err(Error::Syntax(self.offset - 1)),
        };

        self.read_exact(minor.as_mut())?;
        Ok(Title(major, minor))
    }

    #[inline]
    fn push_title(&mut self, item: Title) {
        assert!(self.buffer.is_none());
        self.buffer = Some(item);
        self.offset -= item.1.as_ref().len() + 1;
    }

    /// Pulls the next header from the input
    #[inline]
    pub fn pull(&mut self) -> Result<Header, Error<R::Error>> {
        let offset = self.offset;
        self.pull_title()?
            .try_into()
            .map_err(|_| Error::Syntax(offset))
    }

    /// Push a single header into the input buffer
    ///
    /// # Panics
    ///
    /// This function panics if called while there is already a header in the
    /// input buffer. You should take care to call this function only after
    /// pulling a header to ensure there is nothing in the input buffer.
    #[inline]
    pub fn push(&mut self, item: Header) {
        self.push_title(Title::from(item))
    }

    /// Gets the current byte offset into the stream
    ///
    /// The offset starts at zero when the decoder is created. Therefore, if
    /// bytes were already read from the reader before the decoder was created,
    /// you must account for this.
    #[inline]
    pub fn offset(&mut self) -> usize {
        self.offset
    }

    /// Process an incoming bytes item
    ///
    /// In CBOR, bytes can be segmented. The logic for this can be a bit tricky,
    /// so we encapsulate that logic using this function. This function **MUST**
    /// be called immediately after first pulling a `Header::Bytes(len)` from
    /// the wire and `len` must be provided to this function from that value.
    ///
    /// The `buf` parameter provides a buffer used when reading in the segmented
    /// bytes. A large buffer will result in fewer calls to read incoming bytes
    /// at the cost of memory usage. You should consider this trade off when
    /// deciding the size of your buffer.
    #[inline]
    pub fn bytes(&mut self, len: Option<usize>) -> Segments<R, crate::seg::Bytes> {
        self.push(Header::Bytes(len));
        Segments::new(self, |header| match header {
            Header::Bytes(len) => Ok(len),
            _ => Err(()),
        })
    }

    /// Process an incoming text item
    ///
    /// In CBOR, text can be segmented. The logic for this can be a bit tricky,
    /// so we encapsulate that logic using this function. This function **MUST**
    /// be called immediately after first pulling a `Header::Text(len)` from
    /// the wire and `len` must be provided to this function from that value.
    ///
    /// The `buf` parameter provides a buffer used when reading in the segmented
    /// text. A large buffer will result in fewer calls to read incoming bytes
    /// at the cost of memory usage. You should consider this trade off when
    /// deciding the size of your buffer.
    #[inline]
    pub fn text(&mut self, len: Option<usize>) -> Segments<R, crate::seg::Text> {
        self.push(Header::Text(len));
        Segments::new(self, |header| match header {
            Header::Text(len) => Ok(len),
            _ => Err(()),
        })
    }
}