1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
#![cfg_attr(feature = "nightly", feature(rustc_attrs))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
#![allow(deprecated)] // TODO: Don't allow this

pub mod chain;
pub mod combinator;
pub mod debug;
pub mod error;
pub mod primitive;
pub mod recovery;
pub mod recursive;
pub mod span;
pub mod stream;
pub mod text;

pub use crate::{error::Error, span::Span};

pub use crate::stream::{BoxStream, Flat, Stream};

use crate::{
    chain::Chain,
    combinator::*,
    debug::*,
    error::{merge_alts, Located},
    primitive::*,
    recovery::*,
};

use std::{
    cmp::Ordering,
    // TODO: Enable when stable
    //lazy::OnceCell,
    fmt,
    marker::PhantomData,
    ops::Range,
    rc::Rc,
    str::FromStr,
    sync::Arc,
};

#[cfg(doc)]
use std::{
    collections::HashMap,
    // TODO: Remove when switching to 2021 edition
    iter::FromIterator,
};

/// Commonly used functions, traits and types.
///
/// *Listen, three eyes,” he said, “don’t you try to outweird me, I get stranger things than you free with my breakfast
/// cereal.”*
pub mod prelude {
    pub use super::{
        error::{Error as _, Simple},
        primitive::{
            any, choice, empty, end, filter, filter_map, just, none_of, one_of, seq, take_until,
            todo,
        },
        recovery::{nested_delimiters, skip_then_retry_until, skip_until},
        recursive::{recursive, Recursive},
        select,
        span::Span as _,
        text,
        text::TextParser as _,
        BoxedParser, Parser,
    };
}

// TODO: Replace with `std::ops::ControlFlow` when stable
enum ControlFlow<C, B> {
    Continue(C),
    Break(B),
}

// ([], Ok((out, alt_err))) => parsing successful,
// alt_err = potential alternative error should a different number of optional patterns be parsed
// ([x, ...], Ok((out, alt_err)) => parsing failed, but recovery occurred so parsing may continue
// ([...], Err(err)) => parsing failed, recovery failed, and one or more errors were produced
// TODO: Change `alt_err` from `Option<Located<I, E>>` to `Vec<Located<I, E>>`
type PResult<I, O, E> = (
    Vec<Located<I, E>>,
    Result<(O, Option<Located<I, E>>), Located<I, E>>,
);

// Shorthand for a stream with the given input and error type.
type StreamOf<'a, I, E> = Stream<'a, I, <E as Error<I>>::Span>;

// [`Parser::parse_recovery`], but generic across the debugger.
fn parse_recovery_inner<
    'a,
    I: Clone,
    O,
    P: Parser<I, O>,
    D: Debugger,
    Iter: Iterator<Item = (I, <P::Error as Error<I>>::Span)> + 'a,
    S: Into<Stream<'a, I, <P::Error as Error<I>>::Span, Iter>>,
>(
    parser: &P,
    debugger: &mut D,
    stream: S,
) -> (Option<O>, Vec<P::Error>)
where
    P: Sized,
{
    #[allow(deprecated)]
    let (mut errors, res) = parser.parse_inner(debugger, &mut stream.into());
    let out = match res {
        Ok((out, _)) => Some(out),
        Err(err) => {
            errors.push(err);
            None
        }
    };
    (out, errors.into_iter().map(|e| e.error).collect())
}

/// A trait implemented by parsers.
///
/// Parsers take a stream of tokens of type `I` and attempt to parse them into a value of type `O`. In doing so, they
/// may encounter errors. These need not be fatal to the parsing process: syntactic errors can be recovered from and a
/// valid output may still be generated alongside any syntax errors that were encountered along the way. Usually, this
/// output comes in the form of an [Abstract Syntax Tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree) (AST).
///
/// You should not need to implement this trait by hand. If you cannot combine existing combintors (and in particular
/// [`custom`]) to create the combinator you're looking for, please
/// [open an issue](https://github.com/zesterer/chumsky/issues/new)! If you *really* need to implement this trait,
/// please check the documentation in the source: some implementation details have been deliberately hidden.
#[cfg_attr(
    feature = "nightly",
    rustc_on_unimplemented(
        message = "`{Self}` is not a parser from `{I}` to `{O}`",
        label = "This parser is not compatible because it does not implement `Parser<{I}, {O}>`",
        note = "You should check that the output types of your parsers are consistent with combinator you're using",
    )
)]
#[allow(clippy::type_complexity)]
pub trait Parser<I: Clone, O> {
    /// The type of errors emitted by this parser.
    type Error: Error<I>; // TODO when default associated types are stable: = Cheap<I>;

    /// Parse a stream with all the bells & whistles. You can use this to implement your own parser combinators. Note
    /// that both the signature and semantic requirements of this function are very likely to change in later versions.
    /// Where possible, prefer more ergonomic combinators provided elsewhere in the crate rather than implementing your
    /// own. For example, [`custom`] provides a flexible, ergonomic way API for process input streams that likely
    /// covers your use-case.
    #[doc(hidden)]
    #[deprecated(
        note = "This method is excluded from the semver guarantees of chumsky. If you decide to use it, broken builds are your fault."
    )]
    fn parse_inner<D: Debugger>(
        &self,
        debugger: &mut D,
        stream: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error>
    where
        Self: Sized;

    /// [`Parser::parse_inner`], but specialised for verbose output. Do not call this method directly.
    ///
    /// If you *really* need to implement this trait, this method should just directly invoke [`Parser::parse_inner`].
    #[doc(hidden)]
    #[deprecated(
        note = "This method is excluded from the semver guarantees of chumsky. If you decide to use it, broken builds are your fault."
    )]
    fn parse_inner_verbose(
        &self,
        d: &mut Verbose,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error>;

    /// [`Parser::parse_inner`], but specialised for silent output. Do not call this method directly.
    ///
    /// If you *really* need to implement this trait, this method should just directly invoke [`Parser::parse_inner`].
    #[doc(hidden)]
    #[deprecated(
        note = "This method is excluded from the semver guarantees of chumsky. If you decide to use it, broken builds are your fault."
    )]
    fn parse_inner_silent(
        &self,
        d: &mut Silent,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error>;

    /// Parse a stream of tokens, yielding an output if possible, and any errors encountered along the way.
    ///
    /// If `None` is returned (i.e: parsing failed) then there will *always* be at least one item in the error `Vec`.
    /// If you don't care about producing an output if errors are encountered, use [`Parser::parse`] instead.
    ///
    /// Although the signature of this function looks complicated, it's simpler than you think! You can pass a
    /// `&[I]`, a [`&str`], or a [`Stream`] to it.
    fn parse_recovery<'a, Iter, S>(&self, stream: S) -> (Option<O>, Vec<Self::Error>)
    where
        Self: Sized,
        Iter: Iterator<Item = (I, <Self::Error as Error<I>>::Span)> + 'a,
        S: Into<Stream<'a, I, <Self::Error as Error<I>>::Span, Iter>>,
    {
        parse_recovery_inner(self, &mut Silent::new(), stream)
    }

    /// Parse a stream of tokens, yielding an output if possible, and any errors encountered along the way. Unlike
    /// [`Parser::parse_recovery`], this function will produce verbose debugging output as it executes.
    ///
    /// If `None` is returned (i.e: parsing failed) then there will *always* be at least one item in the error `Vec`.
    /// If you don't care about producing an output if errors are encountered, use `Parser::parse` instead.
    ///
    /// Although the signature of this function looks complicated, it's simpler than you think! You can pass a
    /// `&[I]`, a [`&str`], or a [`Stream`] to it.
    ///
    /// You'll probably want to make sure that this doesn't end up in production code: it exists only to help you debug
    /// your parser. Additionally, its API is quite likely to change in future versions.
    ///
    /// This method will receive more extensive documentation as the crate's debugging features mature.
    fn parse_recovery_verbose<'a, Iter, S>(&self, stream: S) -> (Option<O>, Vec<Self::Error>)
    where
        Self: Sized,
        Iter: Iterator<Item = (I, <Self::Error as Error<I>>::Span)> + 'a,
        S: Into<Stream<'a, I, <Self::Error as Error<I>>::Span, Iter>>,
    {
        let mut debugger = Verbose::new();
        let res = parse_recovery_inner(self, &mut debugger, stream);
        debugger.print();
        res
    }

    /// Parse a stream of tokens, yielding an output *or* any errors that were encountered along the way.
    ///
    /// If you wish to attempt to produce an output even if errors are encountered, use [`Parser::parse_recovery`].
    ///
    /// Although the signature of this function looks complicated, it's simpler than you think! You can pass a
    /// [`&[I]`], a [`&str`], or a [`Stream`] to it.
    fn parse<'a, Iter, S>(&self, stream: S) -> Result<O, Vec<Self::Error>>
    where
        Self: Sized,
        Iter: Iterator<Item = (I, <Self::Error as Error<I>>::Span)> + 'a,
        S: Into<Stream<'a, I, <Self::Error as Error<I>>::Span, Iter>>,
    {
        let (output, errors) = self.parse_recovery(stream);
        if errors.is_empty() {
            Ok(output.expect(
                "Parsing failed, but no errors were emitted. This is troubling, to say the least.",
            ))
        } else {
            Err(errors)
        }
    }

    /// Include this parser in the debugging output produced by [`Parser::parse_recovery_verbose`].
    ///
    /// You'll probably want to make sure that this doesn't end up in production code: it exists only to help you debug
    /// your parser. Additionally, its API is quite likely to change in future versions.
    /// Use this parser like a print statement, to display whatever you pass as the argument 'x'
    ///
    /// This method will receive more extensive documentation as the crate's debugging features mature.
    #[track_caller]
    fn debug<T>(self, x: T) -> Debug<Self>
    where
        Self: Sized,
        T: fmt::Display + 'static,
    {
        Debug(self, Rc::new(x), *std::panic::Location::caller())
    }

    /// Map the output of this parser to another value.
    ///
    /// The output type of this parser is `U`, the same as the function's output.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// #[derive(Debug, PartialEq)]
    /// enum Token { Word(String), Num(u64) }
    ///
    /// let word = filter::<_, _, Cheap<char>>(|c: &char| c.is_alphabetic())
    ///     .repeated().at_least(1)
    ///     .collect::<String>()
    ///     .map(Token::Word);
    ///
    /// let num = filter::<_, _, Cheap<char>>(|c: &char| c.is_ascii_digit())
    ///     .repeated().at_least(1)
    ///     .collect::<String>()
    ///     .map(|s| Token::Num(s.parse().unwrap()));
    ///
    /// let token = word.or(num);
    ///
    /// assert_eq!(token.parse("test"), Ok(Token::Word("test".to_string())));
    /// assert_eq!(token.parse("42"), Ok(Token::Num(42)));
    /// ```
    fn map<U, F>(self, f: F) -> Map<Self, F, O>
    where
        Self: Sized,
        F: Fn(O) -> U,
    {
        Map(self, f, PhantomData)
    }

    /// Map the output of this parser to another value, making use of the pattern's span when doing so.
    ///
    /// This is very useful when generating an AST that attaches a span to each AST node.
    ///
    /// The output type of this parser is `U`, the same as the function's output.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::prelude::*;
    /// use std::ops::Range;
    ///
    /// // It's common for AST nodes to use a wrapper type that allows attaching span information to them
    /// #[derive(Debug, PartialEq)]
    /// pub struct Spanned<T>(T, Range<usize>);
    ///
    /// let ident = text::ident::<_, Simple<char>>()
    ///     .map_with_span(|ident, span| Spanned(ident, span))
    ///     .padded();
    ///
    /// assert_eq!(ident.parse("hello"), Ok(Spanned("hello".to_string(), 0..5)));
    /// assert_eq!(ident.parse("       hello   "), Ok(Spanned("hello".to_string(), 7..12)));
    /// ```
    fn map_with_span<U, F>(self, f: F) -> MapWithSpan<Self, F, O>
    where
        Self: Sized,
        F: Fn(O, <Self::Error as Error<I>>::Span) -> U,
    {
        MapWithSpan(self, f, PhantomData)
    }

    /// Map the primary error of this parser to another value.
    ///
    /// This function is most useful when using a custom error type, allowing you to augment errors according to
    /// context.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    // TODO: Map E -> D, not E -> E
    fn map_err<F>(self, f: F) -> MapErr<Self, F>
    where
        Self: Sized,
        F: Fn(Self::Error) -> Self::Error,
    {
        MapErr(self, f)
    }

    /// Map the primary error of this parser to a result. If the result is [`Ok`], the parser succeeds with that value.
    ///
    /// Note that even if the function returns an [`Ok`], the input stream will still be 'stuck' at the input following
    /// the input that triggered the error. You'll need to follow uses of this combinator with a parser that resets
    /// the input stream to a known-good state (for example, [`take_until`]).
    ///
    /// The output type of this parser is `U`, the [`Ok`] type of the result.
    fn or_else<F>(self, f: F) -> OrElse<Self, F>
    where
        Self: Sized,
        F: Fn(Self::Error) -> Result<O, Self::Error>,
    {
        OrElse(self, f)
    }

    /// Map the primary error of this parser to another value, making use of the span from the start of the attempted
    /// to the point at which the error was encountered.
    ///
    /// This function is useful for augmenting errors to allow them to display the span of the initial part of a
    /// pattern, for example to add a "while parsing" clause to your error messages.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    // TODO: Map E -> D, not E -> E
    fn map_err_with_span<F>(self, f: F) -> MapErrWithSpan<Self, F>
    where
        Self: Sized,
        F: Fn(Self::Error, <Self::Error as Error<I>>::Span) -> Self::Error,
    {
        MapErrWithSpan(self, f)
    }

    /// After a successful parse, apply a fallible function to the output. If the function produces an error, treat it
    /// as a parsing error.
    ///
    /// If you wish parsing of this pattern to continue when an error is generated instead of halting, consider using
    /// [`Parser::validate`] instead.
    ///
    /// The output type of this parser is `U`, the [`Ok`] return value of the function.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::prelude::*;
    /// let byte = text::int::<_, Simple<char>>(10)
    ///     .try_map(|s, span| s
    ///         .parse::<u8>()
    ///         .map_err(|e| Simple::custom(span, format!("{}", e))));
    ///
    /// assert!(byte.parse("255").is_ok());
    /// assert!(byte.parse("256").is_err()); // Out of range
    /// ```
    fn try_map<U, F>(self, f: F) -> TryMap<Self, F, O>
    where
        Self: Sized,
        F: Fn(O, <Self::Error as Error<I>>::Span) -> Result<U, Self::Error>,
    {
        TryMap(self, f, PhantomData)
    }

    /// Validate an output, producing non-terminal errors if it does not fulfil certain criteria.
    ///
    /// This function also permits mapping the output to a value of another type, similar to [`Parser::map`].
    ///
    /// If you wish parsing of this pattern to halt when an error is generated instead of continuing, consider using
    /// [`Parser::try_map`] instead.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::prelude::*;
    /// let large_int = text::int::<char, _>(10)
    ///     .from_str()
    ///     .unwrapped()
    ///     .validate(|x: u32, span, emit| {
    ///         if x < 256 { emit(Simple::custom(span, format!("{} must be 256 or higher.", x))) }
    ///         x
    ///     });
    ///
    /// assert_eq!(large_int.parse("537"), Ok(537));
    /// assert!(large_int.parse("243").is_err());
    /// ```
    fn validate<F, U>(self, f: F) -> Validate<Self, O, F>
    where
        Self: Sized,
        F: Fn(O, <Self::Error as Error<I>>::Span, &mut dyn FnMut(Self::Error)) -> U,
    {
        Validate(self, f, PhantomData)
    }

    /// Label the pattern parsed by this parser for more useful error messages.
    ///
    /// This is useful when you want to give users a more useful description of an expected pattern than simply a list
    /// of possible initial tokens. For example, it's common to use the term "expression" at a catch-all for a number
    /// of different constructs in many languages.
    ///
    /// This does not label recovered errors generated by sub-patterns within the parser, only error *directly* emitted
    /// by the parser.
    ///
    /// This does not label errors where the labelled pattern consumed input (i.e: in unambiguous cases).
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    /// *Note: There is a chance that this method will be deprecated in favour of a more general solution in later
    /// versions of the crate.*
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let frac = text::digits(10)
    ///     .chain(just('.'))
    ///     .chain::<char, _, _>(text::digits(10))
    ///     .collect::<String>()
    ///     .then_ignore(end())
    ///     .labelled("number");
    ///
    /// assert_eq!(frac.parse("42.3"), Ok("42.3".to_string()));
    /// assert_eq!(frac.parse("hello"), Err(vec![Cheap::expected_input_found(0..1, Vec::new(), Some('h')).with_label("number")]));
    /// assert_eq!(frac.parse("42!"), Err(vec![Cheap::expected_input_found(2..3, vec![Some('.')], Some('!')).with_label("number")]));
    /// ```
    fn labelled<L>(self, label: L) -> Label<Self, L>
    where
        Self: Sized,
        L: Into<<Self::Error as Error<I>>::Label> + Clone,
    {
        Label(self, label)
    }

    /// Transform all outputs of this parser to a pretermined value.
    ///
    /// The output type of this parser is `U`, the type of the predetermined value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// #[derive(Clone, Debug, PartialEq)]
    /// enum Op { Add, Sub, Mul, Div }
    ///
    /// let op = just::<_, _, Cheap<char>>('+').to(Op::Add)
    ///     .or(just('-').to(Op::Sub))
    ///     .or(just('*').to(Op::Mul))
    ///     .or(just('/').to(Op::Div));
    ///
    /// assert_eq!(op.parse("+"), Ok(Op::Add));
    /// assert_eq!(op.parse("/"), Ok(Op::Div));
    /// ```
    fn to<U>(self, x: U) -> To<Self, O, U>
    where
        Self: Sized,
        U: Clone,
    {
        To(self, x, PhantomData)
    }

    /// Left-fold the output of the parser into a single value.
    ///
    /// The output of the original parser must be of type `(A, impl IntoIterator<Item = B>)`.
    ///
    /// The output type of this parser is `A`, the left-hand component of the original parser's output.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let int = text::int::<char, Cheap<char>>(10)
    ///     .from_str()
    ///     .unwrapped();
    ///
    /// let sum = int
    ///     .then(just('+').ignore_then(int).repeated())
    ///     .foldl(|a, b| a + b);
    ///
    /// assert_eq!(sum.parse("1+12+3+9"), Ok(25));
    /// assert_eq!(sum.parse("6"), Ok(6));
    /// ```
    fn foldl<A, B, F>(self, f: F) -> Foldl<Self, F, A, B>
    where
        Self: Parser<I, (A, B)> + Sized,
        B: IntoIterator,
        F: Fn(A, B::Item) -> A,
    {
        Foldl(self, f, PhantomData)
    }

    /// Right-fold the output of the parser into a single value.
    ///
    /// The output of the original parser must be of type `(impl IntoIterator<Item = A>, B)`. Because right-folds work
    /// backwards, the iterator must implement [`DoubleEndedIterator`] so that it can be reversed.
    ///
    /// The output type of this parser is `B`, the right-hand component of the original parser's output.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let int = text::int::<char, Cheap<char>>(10)
    ///     .from_str()
    ///     .unwrapped();
    ///
    /// let signed = just('+').to(1)
    ///     .or(just('-').to(-1))
    ///     .repeated()
    ///     .then(int)
    ///     .foldr(|a, b| a * b);
    ///
    /// assert_eq!(signed.parse("3"), Ok(3));
    /// assert_eq!(signed.parse("-17"), Ok(-17));
    /// assert_eq!(signed.parse("--+-+-5"), Ok(5));
    /// ```
    fn foldr<'a, A, B, F>(self, f: F) -> Foldr<Self, F, A, B>
    where
        Self: Parser<I, (A, B)> + Sized,
        A: IntoIterator,
        A::IntoIter: DoubleEndedIterator,
        F: Fn(A::Item, B) -> B + 'a,
    {
        Foldr(self, f, PhantomData)
    }

    /// Ignore the output of this parser, yielding `()` as an output instead.
    ///
    /// This can be used to reduce the cost of parsing by avoiding unnecessary allocations (most collections containing
    /// [ZSTs](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
    /// [do not allocate](https://doc.rust-lang.org/std/vec/struct.Vec.html#guarantees)). For example, it's common to
    /// want to ignore whitespace in many grammars (see [`text::whitespace`]).
    ///
    /// The output type of this parser is `()`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// // A parser that parses any number of whitespace characters without allocating
    /// let whitespace = filter::<_, _, Cheap<char>>(|c: &char| c.is_whitespace())
    ///     .ignored()
    ///     .repeated();
    ///
    /// assert_eq!(whitespace.parse("    "), Ok(vec![(); 4]));
    /// assert_eq!(whitespace.parse("  hello"), Ok(vec![(); 2]));
    /// ```
    fn ignored(self) -> Ignored<Self, O>
    where
        Self: Sized,
    {
        To(self, (), PhantomData)
    }

    /// Collect the output of this parser into a type implementing [`FromIterator`].
    ///
    /// This is commonly useful for collecting [`Vec<char>`] outputs into [`String`]s, or [`(T, U)`] into a
    /// [`HashMap`] and is analagous to [`Iterator::collect`].
    ///
    /// The output type of this parser is `C`, the type being collected into.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let word = filter::<_, _, Cheap<char>>(|c: &char| c.is_alphabetic()) // This parser produces an output of `char`
    ///     .repeated() // This parser produces an output of `Vec<char>`
    ///     .collect::<String>(); // But `Vec<char>` is less useful than `String`, so convert to the latter
    ///
    /// assert_eq!(word.parse("hello"), Ok("hello".to_string()));
    /// ```
    // TODO: Make `Parser::repeated` generic over an `impl FromIterator` to reduce required allocations
    fn collect<C>(self) -> Map<Self, fn(O) -> C, O>
    where
        Self: Sized,
        O: IntoIterator,
        C: core::iter::FromIterator<O::Item>,
    {
        self.map(|items| C::from_iter(items.into_iter()))
    }

    /// Parse one thing and then another thing, yielding a tuple of the two outputs.
    ///
    /// The output type of this parser is `(O, U)`, a combination of the outputs of both parsers.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let word = filter::<_, _, Cheap<char>>(|c: &char| c.is_alphabetic())
    ///     .repeated().at_least(1)
    ///     .collect::<String>();
    /// let two_words = word.then_ignore(just(' ')).then(word);
    ///
    /// assert_eq!(two_words.parse("dog cat"), Ok(("dog".to_string(), "cat".to_string())));
    /// assert!(two_words.parse("hedgehog").is_err());
    /// ```
    fn then<U, P>(self, other: P) -> Then<Self, P>
    where
        Self: Sized,
        P: Parser<I, U, Error = Self::Error>,
    {
        Then(self, other)
    }

    /// Parse one thing and then another thing, creating the second parser from the result of
    /// the first. If you only have a couple cases to handle, prefer [`Parser::or`].
    ///
    /// The output of this parser is `U`, the result of the second parser
    ///
    /// Error recovery for this parser may be sub-optimal, as if the first parser succeeds on
    /// recovery then the second produces an error, the primary error will point to the location in
    /// the second parser which failed, ignoring that the first parser may be the root cause. There
    /// may be other pathological errors cases as well.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let letter_up = one_of::<_, _, Cheap<u8>>((b'a'..=b'z').collect::<Vec<u8>>())
    ///     .then_with(|letter: u8| just(letter + 1));
    ///
    /// assert_eq!(letter_up.parse(*b"ab"), Ok(b'b'));
    /// assert!(letter_up.parse(*b"ac").is_err());
    /// ```
    fn then_with<U, P, F: Fn(O) -> P>(self, other: F) -> ThenWith<I, O, U, Self, P, F>
    where
        Self: Sized,
        P: Parser<I, U, Error = Self::Error>,
    {
        ThenWith(self, other, PhantomData)
    }

    /// Parse one thing and then another thing, attempting to chain the two outputs into a [`Vec`].
    ///
    /// The output type of this parser is `Vec<T>`, composed of the elements of the outputs of both parsers.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let int = just('-').or_not()
    ///     .chain(filter::<_, _, Cheap<char>>(|c: &char| c.is_ascii_digit() && *c != '0')
    ///         .chain(filter::<_, _, Cheap<char>>(|c: &char| c.is_ascii_digit()).repeated()))
    ///     .or(just('0').map(|c| vec![c]))
    ///     .then_ignore(end())
    ///     .collect::<String>()
    ///     .from_str()
    ///     .unwrapped();
    ///
    /// assert_eq!(int.parse("0"), Ok(0));
    /// assert_eq!(int.parse("415"), Ok(415));
    /// assert_eq!(int.parse("-50"), Ok(-50));
    /// assert!(int.parse("-0").is_err());
    /// assert!(int.parse("05").is_err());
    /// ```
    fn chain<T, U, P>(self, other: P) -> Map<Then<Self, P>, fn((O, U)) -> Vec<T>, (O, U)>
    where
        Self: Sized,
        U: Chain<T>,
        O: Chain<T>,
        P: Parser<I, U, Error = Self::Error>,
    {
        self.then(other).map(|(a, b)| {
            let mut v = Vec::with_capacity(a.len() + b.len());
            a.append_to(&mut v);
            b.append_to(&mut v);
            v
        })
    }

    /// Flatten a nested collection.
    ///
    /// This use-cases of this method are broadly similar to those of [`Iterator::flatten`].
    ///
    /// The output type of this parser is `Vec<T>`, where the original parser output was
    /// `impl IntoIterator<Item = impl IntoIterator<Item = T>>`.
    fn flatten<T, Inner>(self) -> Map<Self, fn(O) -> Vec<T>, O>
    where
        Self: Sized,
        O: IntoIterator<Item = Inner>,
        Inner: IntoIterator<Item = T>,
    {
        self.map(|xs| xs.into_iter().flat_map(|xs| xs.into_iter()).collect())
    }

    /// Parse one thing and then another thing, yielding only the output of the latter.
    ///
    /// The output type of this parser is `U`, the same as the second parser.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let zeroes = filter::<_, _, Cheap<char>>(|c: &char| *c == '0').ignored().repeated();
    /// let digits = filter(|c: &char| c.is_ascii_digit()).repeated();
    /// let integer = zeroes
    ///     .ignore_then(digits)
    ///     .collect::<String>()
    ///     .from_str()
    ///     .unwrapped();
    ///
    /// assert_eq!(integer.parse("00064"), Ok(64));
    /// assert_eq!(integer.parse("32"), Ok(32));
    /// ```
    fn ignore_then<U, P>(self, other: P) -> IgnoreThen<Self, P, O, U>
    where
        Self: Sized,
        P: Parser<I, U, Error = Self::Error>,
    {
        Map(Then(self, other), |(_, u)| u, PhantomData)
    }

    /// Parse one thing and then another thing, yielding only the output of the former.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let word = filter::<_, _, Cheap<char>>(|c: &char| c.is_alphabetic())
    ///     .repeated().at_least(1)
    ///     .collect::<String>();
    ///
    /// let punctuated = word
    ///     .then_ignore(just('!').or(just('?')).or_not());
    ///
    /// let sentence = punctuated
    ///     .padded() // Allow for whitespace gaps
    ///     .repeated();
    ///
    /// assert_eq!(
    ///     sentence.parse("hello! how are you?"),
    ///     Ok(vec![
    ///         "hello".to_string(),
    ///         "how".to_string(),
    ///         "are".to_string(),
    ///         "you".to_string(),
    ///     ]),
    /// );
    /// ```
    fn then_ignore<U, P>(self, other: P) -> ThenIgnore<Self, P, O, U>
    where
        Self: Sized,
        P: Parser<I, U, Error = Self::Error>,
    {
        Map(Then(self, other), |(o, _)| o, PhantomData)
    }

    /// Parse a pattern, but with an instance of another pattern on either end, yielding the output of the inner.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let ident = text::ident::<_, Simple<char>>()
    ///     .padded_by(just('!'));
    ///
    /// assert_eq!(ident.parse("!hello!"), Ok("hello".to_string()));
    /// assert!(ident.parse("hello!").is_err());
    /// assert!(ident.parse("!hello").is_err());
    /// assert!(ident.parse("hello").is_err());
    /// ```
    fn padded_by<U, P>(self, other: P) -> ThenIgnore<IgnoreThen<P, Self, U, O>, P, O, U>
    where
        Self: Sized,
        P: Parser<I, U, Error = Self::Error> + Clone,
    {
        other.clone().ignore_then(self).then_ignore(other)
    }

    /// Parse the pattern surrounded by the given delimiters.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// // A LISP-style S-expression
    /// #[derive(Debug, PartialEq)]
    /// enum SExpr {
    ///     Ident(String),
    ///     Num(u64),
    ///     List(Vec<SExpr>),
    /// }
    ///
    /// let ident = filter::<_, _, Cheap<char>>(|c: &char| c.is_alphabetic())
    ///     .repeated().at_least(1)
    ///     .collect::<String>();
    ///
    /// let num = text::int(10)
    ///     .from_str()
    ///     .unwrapped();
    ///
    /// let s_expr = recursive(|s_expr| s_expr
    ///     .padded()
    ///     .repeated()
    ///     .map(SExpr::List)
    ///     .delimited_by(just('('), just(')'))
    ///     .or(ident.map(SExpr::Ident))
    ///     .or(num.map(SExpr::Num)));
    ///
    /// // A valid input
    /// assert_eq!(
    ///     s_expr.parse_recovery("(add (mul 42 3) 15)"),
    ///     (
    ///         Some(SExpr::List(vec![
    ///             SExpr::Ident("add".to_string()),
    ///             SExpr::List(vec![
    ///                 SExpr::Ident("mul".to_string()),
    ///                 SExpr::Num(42),
    ///                 SExpr::Num(3),
    ///             ]),
    ///             SExpr::Num(15),
    ///         ])),
    ///         Vec::new(), // No errors!
    ///     ),
    /// );
    /// ```
    fn delimited_by<U, V, L, R>(self, start: L, end: R) -> DelimitedBy<Self, L, R, U, V>
    where
        Self: Sized,
        L: Parser<I, U, Error = Self::Error>,
        R: Parser<I, V, Error = Self::Error>,
    {
        DelimitedBy {
            item: self,
            start,
            end,
            phantom: PhantomData,
        }
    }

    /// Parse one thing or, on failure, another thing.
    ///
    /// The output of both parsers must be of the same type, because either output can be produced.
    ///
    /// If both parser succeed, the output of the first parser is guaranteed to be prioritised over the output of the
    /// second.
    ///
    /// If both parsers produce errors, the combinator will attempt to select from or combine the errors to produce an
    /// error that is most likely to be useful to a human attempting to understand the problem. The exact algorithm
    /// used is left unspecified, and is not part of the crate's semver guarantees, although regressions in error
    /// quality should be reported in the issue tracker of the main repository.
    ///
    /// Please note that long chains of [`Parser::or`] combinators have been known to result in poor compilation times.
    /// If you feel you are experiencing this, consider using [`choice`] instead.
    ///
    /// The output type of this parser is `O`, the output of both parsers.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let op = just::<_, _, Cheap<char>>('+')
    ///     .or(just('-'))
    ///     .or(just('*'))
    ///     .or(just('/'));
    ///
    /// assert_eq!(op.parse("+"), Ok('+'));
    /// assert_eq!(op.parse("/"), Ok('/'));
    /// assert!(op.parse("!").is_err());
    /// ```
    fn or<P>(self, other: P) -> Or<Self, P>
    where
        Self: Sized,
        P: Parser<I, O, Error = Self::Error>,
    {
        Or(self, other)
    }

    /// Apply a fallback recovery strategy to this parser should it fail.
    ///
    /// There is no silver bullet for error recovery, so this function allows you to specify one of several different
    /// strategies at the location of your choice. Prefer an error recovery strategy that more precisely mirrors valid
    /// syntax where possible to make error recovery more reliable.
    ///
    /// Because chumsky is a [PEG](https://en.m.wikipedia.org/wiki/Parsing_expression_grammar) parser, which always
    /// take the first successful parsing route through a grammar, recovering from an error may cause the parser to
    /// erroneously miss alternative valid routes through the grammar that do not generate recoverable errors. If you
    /// run into cases where valid syntax fails to parse without errors, this might be happening: consider removing
    /// error recovery or switching to a more specific error recovery strategy.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// #[derive(Debug, PartialEq)]
    /// enum Expr {
    ///     Error,
    ///     Int(String),
    ///     List(Vec<Expr>),
    /// }
    ///
    /// let expr = recursive::<_, _, _, _, Simple<char>>(|expr| expr
    ///     .separated_by(just(','))
    ///     .delimited_by(just('['), just(']'))
    ///     .map(Expr::List)
    ///     // If parsing a list expression fails, recover at the next delimiter, generating an error AST node
    ///     .recover_with(nested_delimiters('[', ']', [], |_| Expr::Error))
    ///     .or(text::int(10).map(Expr::Int))
    ///     .padded());
    ///
    /// assert!(expr.parse("five").is_err()); // Text is not a valid expression in this language...
    /// assert!(expr.parse("[1, 2, 3]").is_ok()); // ...but lists and numbers are!
    ///
    /// // This input has two syntax errors...
    /// let (ast, errors) = expr.parse_recovery("[[1, two], [3, four]]");
    /// // ...and error recovery allows us to catch both of them!
    /// assert_eq!(errors.len(), 2);
    /// // Additionally, the AST we get back still has useful information.
    /// assert_eq!(ast, Some(Expr::List(vec![Expr::Error, Expr::Error])));
    /// ```
    fn recover_with<S>(self, strategy: S) -> Recovery<Self, S>
    where
        Self: Sized,
        S: Strategy<I, O, Self::Error>,
    {
        Recovery(self, strategy)
    }

    /// Attempt to parse something, but only if it exists.
    ///
    /// If parsing of the pattern is successful, the output is `Some(_)`. Otherwise, the output is `None`.
    ///
    /// The output type of this parser is `Option<O>`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let word = filter::<_, _, Cheap<char>>(|c: &char| c.is_alphabetic())
    ///     .repeated().at_least(1)
    ///     .collect::<String>();
    ///
    /// let word_or_question = word
    ///     .then(just('?').or_not());
    ///
    /// assert_eq!(word_or_question.parse("hello?"), Ok(("hello".to_string(), Some('?'))));
    /// assert_eq!(word_or_question.parse("wednesday"), Ok(("wednesday".to_string(), None)));
    /// ```
    fn or_not(self) -> OrNot<Self>
    where
        Self: Sized,
    {
        OrNot(self)
    }

    /// Parse a pattern any number of times (including zero times).
    ///
    /// Input is eagerly parsed. Be aware that the parser will accept no occurences of the pattern too. Consider using
    /// [`Repeated::at_least`] instead if it better suits your use-case.
    ///
    /// The output type of this parser is `Vec<O>`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let num = filter::<_, _, Cheap<char>>(|c: &char| c.is_ascii_digit())
    ///     .repeated().at_least(1)
    ///     .collect::<String>()
    ///     .from_str()
    ///     .unwrapped();
    ///
    /// let sum = num.then(just('+').ignore_then(num).repeated())
    ///     .foldl(|a, b| a + b);
    ///
    /// assert_eq!(sum.parse("2+13+4+0+5"), Ok(24));
    /// ```
    fn repeated(self) -> Repeated<Self>
    where
        Self: Sized,
    {
        Repeated(self, 0, None)
    }

    /// Parse a pattern, separated by another, any number of times.
    ///
    /// You can use [`SeparatedBy::allow_leading`] or [`SeparatedBy::allow_trailing`] to allow leading or trailing
    /// separators.
    ///
    /// The output type of this parser is `Vec<O>`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::{prelude::*, error::Cheap};
    /// let shopping = text::ident::<_, Simple<char>>()
    ///     .padded()
    ///     .separated_by(just(','));
    ///
    /// assert_eq!(shopping.parse("eggs"), Ok(vec!["eggs".to_string()]));
    /// assert_eq!(shopping.parse("eggs, flour, milk"), Ok(vec!["eggs".to_string(), "flour".to_string(), "milk".to_string()]));
    /// ```
    ///
    /// See [`SeparatedBy::allow_leading`] and [`SeparatedBy::allow_trailing`] for more examples.
    fn separated_by<U, P>(self, other: P) -> SeparatedBy<Self, P, U>
    where
        Self: Sized,
        P: Parser<I, U, Error = Self::Error>,
    {
        SeparatedBy {
            item: self,
            delimiter: other,
            at_least: 0,
            at_most: None,
            allow_leading: false,
            allow_trailing: false,
            phantom: PhantomData,
        }
    }

    /// Parse a pattern. Afterwards, the input stream will be rewound to its original state, as if parsing had not
    /// occurred.
    ///
    /// This combinator is useful for cases in which you wish to avoid a parser accidentally consuming too much input,
    /// causing later parsers to fail as a result. A typical use-case of this is that you want to parse something that
    /// is not followed by something else.
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::prelude::*;
    /// let just_numbers = text::digits::<_, Simple<char>>(10)
    ///     .padded()
    ///     .then_ignore(none_of("+-*/").rewind())
    ///     .separated_by(just(','));
    /// // 3 is not parsed because it's followed by '+'.
    /// assert_eq!(just_numbers.parse("1, 2, 3 + 4"), Ok(vec!["1".to_string(), "2".to_string()]));
    /// ```
    fn rewind(self) -> Rewind<Self>
    where
        Self: Sized,
    {
        Rewind(self)
    }

    /// Box the parser, yielding a parser that performs parsing through dynamic dispatch.
    ///
    /// Boxing a parser might be useful for:
    ///
    /// - Dynamically building up parsers at runtime
    ///
    /// - Improving compilation times (Rust can struggle to compile code containing very long types)
    ///
    /// - Passing a parser over an FFI boundary
    ///
    /// - Getting around compiler implementation problems with long types such as
    ///   [this](https://github.com/rust-lang/rust/issues/54540).
    ///
    /// - Places where you need to name the type of a parser
    ///
    /// Boxing a parser is broadly equivalent to boxing other combinators via dynamic dispatch, such as [`Iterator`].
    ///
    /// The output type of this parser is `O`, the same as the original parser.
    fn boxed<'a>(self) -> BoxedParser<'a, I, O, Self::Error>
    where
        Self: Sized + 'a,
    {
        BoxedParser(Rc::new(self))
    }

    /// Attempt to convert the output of this parser into something else using Rust's [`FromStr`] trait.
    ///
    /// This is most useful when wanting to convert literal values into their corresponding Rust type, such as when
    /// parsing integers.
    ///
    /// The output type of this parser is `Result<U, U::Err>`, the result of attempting to parse the output, `O`, into
    /// the value `U`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::prelude::*;
    /// let uint64 = text::int::<_, Simple<char>>(10)
    ///     .from_str::<u64>()
    ///     .unwrapped();
    ///
    /// assert_eq!(uint64.parse("7"), Ok(7));
    /// assert_eq!(uint64.parse("42"), Ok(42));
    /// ```
    #[allow(clippy::wrong_self_convention)]
    fn from_str<U>(self) -> Map<Self, fn(O) -> Result<U, U::Err>, O>
    where
        Self: Sized,
        U: FromStr,
        O: AsRef<str>,
    {
        self.map(|o| o.as_ref().parse())
    }

    /// For parsers that produce a [`Result`] as their output, unwrap the result (panicking if an [`Err`] is
    /// encountered).
    ///
    /// In general, this method should be avoided except in cases where all possible that the parser might produce can
    /// by parsed using [`FromStr`] without producing an error.
    ///
    /// This combinator is not named `unwrap` to avoid confusion: it unwraps *during parsing*, not immediately.
    ///
    /// The output type of this parser is `U`, the [`Ok`] value of the [`Result`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use chumsky::prelude::*;
    /// let boolean = just::<_, _, Simple<char>>("true")
    ///     .or(just("false"))
    ///     .from_str::<bool>()
    ///     .unwrapped(); // Cannot panic: the only possible outputs generated by the parser are "true" or "false"
    ///
    /// assert_eq!(boolean.parse("true"), Ok(true));
    /// assert_eq!(boolean.parse("false"), Ok(false));
    /// // Does not panic, because the original parser only accepts "true" or "false"
    /// assert!(boolean.parse("42").is_err());
    /// ```
    fn unwrapped<U, E>(self) -> Map<Self, fn(Result<U, E>) -> U, Result<U, E>>
    where
        Self: Sized + Parser<I, Result<U, E>>,
        E: fmt::Debug,
    {
        self.map(|o| o.unwrap())
    }
}

impl<'a, I: Clone, O, T: Parser<I, O> + ?Sized> Parser<I, O> for &'a T {
    type Error = T::Error;

    fn parse_inner<D: Debugger>(
        &self,
        debugger: &mut D,
        stream: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        debugger.invoke::<_, _, T>(*self, stream)
    }

    fn parse_inner_verbose(
        &self,
        d: &mut Verbose,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
    fn parse_inner_silent(
        &self,
        d: &mut Silent,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
}

impl<I: Clone, O, T: Parser<I, O> + ?Sized> Parser<I, O> for Box<T> {
    type Error = T::Error;

    fn parse_inner<D: Debugger>(
        &self,
        debugger: &mut D,
        stream: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        debugger.invoke::<_, _, T>(&*self, stream)
    }

    fn parse_inner_verbose(
        &self,
        d: &mut Verbose,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
    fn parse_inner_silent(
        &self,
        d: &mut Silent,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
}

impl<I: Clone, O, T: Parser<I, O> + ?Sized> Parser<I, O> for Rc<T> {
    type Error = T::Error;

    fn parse_inner<D: Debugger>(
        &self,
        debugger: &mut D,
        stream: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        debugger.invoke::<_, _, T>(&*self, stream)
    }

    fn parse_inner_verbose(
        &self,
        d: &mut Verbose,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
    fn parse_inner_silent(
        &self,
        d: &mut Silent,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
}

impl<I: Clone, O, T: Parser<I, O> + ?Sized> Parser<I, O> for Arc<T> {
    type Error = T::Error;

    fn parse_inner<D: Debugger>(
        &self,
        debugger: &mut D,
        stream: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        debugger.invoke::<_, _, T>(&*self, stream)
    }

    fn parse_inner_verbose(
        &self,
        d: &mut Verbose,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
    fn parse_inner_silent(
        &self,
        d: &mut Silent,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
}

/// See [`Parser::boxed`].
///
/// This type is a [`repr(transparent)`](https://doc.rust-lang.org/nomicon/other-reprs.html#reprtransparent) wrapper
/// around its inner value.
///
/// Due to current implementation details, the inner value is not, in fact, a [`Box`], but is an [`Rc`] to facilitate
/// efficient cloning. This is likely to change in the future. Unlike [`Box`], [`Rc`] has no size guarantees: although
/// it is *currently* the same size as a raw pointer.
// TODO: Don't use an Rc
#[repr(transparent)]
pub struct BoxedParser<'a, I, O, E: Error<I>>(Rc<dyn Parser<I, O, Error = E> + 'a>);

impl<'a, I, O, E: Error<I>> Clone for BoxedParser<'a, I, O, E> {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

impl<'a, I: Clone, O, E: Error<I>> Parser<I, O> for BoxedParser<'a, I, O, E> {
    type Error = E;

    fn parse_inner<D: Debugger>(
        &self,
        debugger: &mut D,
        stream: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        debugger.invoke(&self.0, stream)
    }

    fn parse_inner_verbose(
        &self,
        d: &mut Verbose,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
    fn parse_inner_silent(
        &self,
        d: &mut Silent,
        s: &mut StreamOf<I, Self::Error>,
    ) -> PResult<I, O, Self::Error> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
}

/// Create a parser that selects one or more input patterns and map them to an output value.
///
/// This is most useful when turning the tokens of a previous compilation pass (such as lexing) into data that can be
/// used for parsing, although it can also generally be used to select inputs and map them to outputs. Any unmapped
/// input patterns will become syntax errors, just as with [`filter`].
///
/// Internally, [`select!`] is a loose wrapper around [`filter_map`] and thinking of it as such might make it less
/// confusing.
///
/// The macro is semantically similar to a `match` expression and so supports
/// [pattern guards](https://doc.rust-lang.org/reference/expressions/match-expr.html#match-guards) too.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Cheap};
/// // The type of our parser's input (tokens like this might be emitted by your compiler's lexer)
/// #[derive(Clone, Debug, PartialEq)]
/// enum Token {
///     Num(u64),
///     Bool(bool),
///     LParen,
///     RParen,
/// }
///
/// // The type of our parser's output, a syntax tree
/// #[derive(Debug, PartialEq)]
/// enum Ast {
///     Num(u64),
///     Bool(bool),
///     List(Vec<Ast>),
/// }
///
/// // Our parser converts a stream of input tokens into an AST
/// // `select!` is used to deconstruct some of the tokens and turn them into AST nodes
/// let ast = recursive::<_, _, _, _, Cheap<Token>>(|ast| {
///     let literal = select! {
///         Token::Num(x) => Ast::Num(x),
///         Token::Bool(x) => Ast::Bool(x),
///     };
///
///     literal.or(ast
///         .repeated()
///         .delimited_by(just(Token::LParen), just(Token::RParen))
///         .map(Ast::List))
/// });
///
/// use Token::*;
/// assert_eq!(
///     ast.parse(vec![LParen, Num(5), LParen, Bool(false), Num(42), RParen, RParen]),
///     Ok(Ast::List(vec![
///         Ast::Num(5),
///         Ast::List(vec![
///             Ast::Bool(false),
///             Ast::Num(42),
///         ]),
///     ])),
/// );
/// ```
#[macro_export]
macro_rules! select {
    ($($p:pat $(if $guard:expr)? => $out:expr),+ $(,)?) => ({
        $crate::primitive::filter_map(move |span, x| match x {
            $($p $(if $guard)? => ::core::result::Result::Ok($out)),+,
            _ => ::core::result::Result::Err($crate::error::Error::expected_input_found(span, ::core::option::Option::None, ::core::option::Option::Some(x))),
        })
    });
}