1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//! # Chronofold
//!
//! Chronofold is a conflict-free replicated data structure (a.k.a. *CRDT*) for
//! versioned text.
//!
//! This crate aims to offer a fast implementation with an easy-to-use
//! `Vec`-like API. It should be near impossible to shoot yourself in the foot
//! and end up with corrupted or lost data.
//!
//! **Note:** We are not there yet! While this implementation should be
//! correct, it is not yet optimized for speed and memory usage. The API might
//! see some changes as we continue to explore different use cases.
//!
//! This implementation is based on ideas published in the paper ["Chronofold:
//! a data structure for versioned text"][paper] by Victor Grishchenko and
//! Mikhail Patrakeev. If you look for a formal introduction to what a
//! chronofold is, reading that excellent paper is highly recommended!
//!
//! [paper]: https://arxiv.org/abs/2002.09511
//!
//! # Example usage
//!
//! ```rust
//! use chronofold::{Chronofold, LogIndex, Op};
//!
//! type AuthorId = &'static str;
//!
//! // Alice creates a chronofold on her machine, makes some initial changes
//! // and sends a copy to Bob.
//! let mut cfold_a = Chronofold::<AuthorId, char>::default();
//! cfold_a.session("alice").extend("Hello chronfold!".chars());
//! let mut cfold_b = cfold_a.clone();
//!
//! // Alice adds some more text, ...
//! let ops_a: Vec<Op<AuthorId, char>> = {
//!     let mut session = cfold_a.session("alice");
//!     session.splice(
//!         LogIndex(15)..LogIndex(15),
//!         " - a data structure for versioned text".chars(),
//!     );
//!     session.iter_ops().collect()
//! };
//!
//! // ... while Bob fixes a typo.
//! let ops_b: Vec<Op<AuthorId, char>> = {
//!     let mut session = cfold_b.session("bob");
//!     session.insert_after(Some(LogIndex(10)), 'o');
//!     session.iter_ops().collect()
//! };
//!
//! // Now their respective states have diverged.
//! assert_eq!(
//!     "Hello chronfold - a data structure for versioned text!",
//!     format!("{}", cfold_a),
//! );
//! assert_eq!("Hello chronofold!", format!("{}", cfold_b));
//!
//! // As soon as both have seen all ops, their states have converged.
//! for op in ops_a {
//!     cfold_b.apply(op).unwrap();
//! }
//! for op in ops_b {
//!     cfold_a.apply(op).unwrap();
//! }
//! let final_text = "Hello chronofold - a data structure for versioned text!";
//! assert_eq!(final_text, format!("{}", cfold_a));
//! assert_eq!(final_text, format!("{}", cfold_b));
//! ```

// As we only have a handful of public items, we've decided to re-export
// everything in the crate root and keep our internal module structure
// private. This keeps things simple for our users and gives us more
// flexibility in restructuring the crate.
mod distributed;
mod error;
mod index;
mod iter;
mod session;
mod version;
pub use crate::distributed::*;
pub use crate::error::*;
pub use crate::index::*;
pub use crate::iter::*;
pub use crate::session::*;
pub use crate::version::*;

use std::fmt;

#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;

/// An entry in the chronofold's log.
#[derive(PartialEq, Eq, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Change<T> {
    Insert(T),
    Delete,
}

/// A conflict-free replicated data structure for versioned sequences.
///
/// # Terminology
///
/// A chronofold can be regarded either as a log of changes or as a sequence of
/// elements. These two viewpoints require distinct terminology:
///
/// - A *log index* is a 0-based index in the log of changes. This indices are
///   stable (i.e. they stay the same after edits), but are subjective for
///   each author.
/// - An *element* is a visible (not yet deleted) value of type `T`.
/// - *Log order* refers to the chronological order in which changes were
///   added to the log. This order is subjective for each author.
/// - *Causal order* refers to the order of the linked list.
///
/// # Editing
///
/// You can edit a chronofold in two ways: Either by applying [`Op`]s, or by
/// creating a [`Session`] which has a `Vec`-like API.
///
/// # Indexing
///
/// Like [`Vec`], the `Chronofold` type allows to access values by index,
/// because it implements the [`Index`] trait. The same rules apply:
/// out-of-bound indexes cause panics, and you can use `get` to check whether
/// the index exists.
///
/// [`Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
/// [`Index`]: https://doc.rust-lang.org/std/ops/trait.Index.html
#[derive(PartialEq, Eq, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Chronofold<A: Author, T> {
    log: Vec<Change<T>>,
    root: Option<LogIndex>,
    version: Version<A>,
    // TODO: Use sparse arrays for the following secondary logs and exclude the
    // trivial cases to save memory.
    next_indices: Vec<Option<LogIndex>>,
    timestamps: Vec<Timestamp<A>>,
    references: Vec<Option<LogIndex>>,
    deleted: Vec<bool>,
}

impl<A: Author, T: fmt::Debug> Chronofold<A, T> {
    /// Constructs a new, empty chronofold.
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates an editing session for a single author.
    pub fn session(&mut self, author: A) -> Session<'_, A, T> {
        Session::new(author, self)
    }

    pub(crate) fn next_log_index(&self) -> LogIndex {
        LogIndex(self.log.len())
    }

    /// Applies an op to the chronofold.
    pub fn apply(&mut self, op: Op<A, T>) -> Result<(), ChronofoldError<A, T>> {
        // Check if an op with the same id was applied already.
        // TODO: Consider adding an `apply_unchecked` variant to skip this
        // check.
        if self.log_index(&op.id).is_some() {
            return Err(ChronofoldError::ExistingTimestamp(op));
        }

        // Convert the reference timestamp, as all our internal functions work
        // with log indices.
        match op.reference {
            Some(t) => match self.log_index(&t) {
                Some(reference) => self
                    .apply_change(op.id, Some(reference), op.change)
                    .map(|_| ()),
                None => Err(ChronofoldError::UnknownReference(op)),
            },
            None => self.apply_change(op.id, None, op.change).map(|_| ()),
        }
    }

    pub(crate) fn apply_change(
        &mut self,
        id: Timestamp<A>,
        reference: Option<LogIndex>,
        change: Change<T>,
    ) -> Result<LogIndex, ChronofoldError<A, T>> {
        // Find the predecessor to `op`.
        let predecessor = if let Some(idx) = self
            .iter_log_indices_causal_range(..)
            .filter(|i| self.references[i.0] == reference)
            .filter(|i| self.timestamps[i.0] > id)
            .last()
        {
            self.iter_subtree(idx).last()
        } else {
            reference
        };

        // Set the predecessors next index to our new change's index while
        // keeping it's previous next index for ourselves.
        let new_index = LogIndex(self.log.len());
        let next_index;
        if let Some(idx) = predecessor {
            next_index = self.next_indices[idx.0];
            self.next_indices[idx.0] = Some(new_index);
        } else {
            next_index = self.root;
            self.root = Some(new_index);
        }

        // If `op` is a removal, mark the referenced change as deleted.
        if let (Some(idx), Change::Delete) = (reference, &change) {
            self.deleted[idx.0] = true;
        }

        // Append to the chronofold's log and secondary logs.
        self.log.push(change);
        self.next_indices.push(next_index);
        self.timestamps.push(id);
        self.references.push(reference);
        self.deleted.push(false);

        // Increment version.
        self.version.inc(&id);

        Ok(new_index)
    }

    /// Returns `true` if the chronofold contains no elements.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of elements in the chronofold.
    pub fn len(&self) -> usize {
        self.iter().count()
    }

    /// Returns a reference to a change in the chronofold's log.
    ///
    /// If `index` is out of bounds, `None` is returned.
    pub fn get(&self, index: LogIndex) -> Option<&Change<T>> {
        self.log.get(index.0)
    }

    fn log_index(&self, timestamp: &Timestamp<A>) -> Option<LogIndex> {
        for i in (timestamp.0).0..self.log.len() {
            if self.timestamps[i] == *timestamp {
                return Some(LogIndex(i));
            }
        }
        None
    }
}

impl<A: Author, T> Default for Chronofold<A, T> {
    fn default() -> Self {
        Self {
            log: Vec::default(),
            root: None,
            version: Version::default(),
            next_indices: Vec::default(),
            timestamps: Vec::default(),
            references: Vec::default(),
            deleted: Vec::default(),
        }
    }
}

impl<A: Author, T: fmt::Display> fmt::Display for Chronofold<A, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "{}",
            self.iter_elements()
                .fold("".to_owned(), |s, t| s + &t.to_string())
        )
    }
}