1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.

use Timelike;
use std::ops::{Add, Sub};
use oldtime::Duration;

/// Extension trait for subsecond rounding or truncation to a maximum number
/// of digits. Rounding can be used to decrease the error variance when
/// serializing/persisting to lower precision. Truncation is the default
/// behavior in Chrono display formatting.  Either can be used to guarantee
/// equality (e.g. for testing) when round-tripping through a lower precision
/// format.
pub trait SubsecRound {
    /// Return a copy rounded to the specified number of subsecond digits. With
    /// 9 or more digits, self is returned unmodified. Halfway values are
    /// rounded up (away from zero).
    ///
    /// # Example
    /// ``` rust
    /// # use chrono::{DateTime, SubsecRound, Timelike, TimeZone, Utc};
    /// let dt = Utc.ymd(2018, 1, 11).and_hms_milli(12, 0, 0, 154);
    /// assert_eq!(dt.round_subsecs(2).nanosecond(), 150_000_000);
    /// assert_eq!(dt.round_subsecs(1).nanosecond(), 200_000_000);
    /// ```
    fn round_subsecs(self, digits: u16) -> Self;

    /// Return a copy truncated to the specified number of subsecond
    /// digits. With 9 or more digits, self is returned unmodified.
    ///
    /// # Example
    /// ``` rust
    /// # use chrono::{DateTime, SubsecRound, Timelike, TimeZone, Utc};
    /// let dt = Utc.ymd(2018, 1, 11).and_hms_milli(12, 0, 0, 154);
    /// assert_eq!(dt.trunc_subsecs(2).nanosecond(), 150_000_000);
    /// assert_eq!(dt.trunc_subsecs(1).nanosecond(), 100_000_000);
    /// ```
    fn trunc_subsecs(self, digits: u16) -> Self;
}

impl<T> SubsecRound for T
where T: Timelike + Add<Duration, Output=T> + Sub<Duration, Output=T>
{
    fn round_subsecs(self, digits: u16) -> T {
        let span = span_for_digits(digits);
        let delta_down = self.nanosecond() % span;
        if delta_down > 0 {
            let delta_up = span - delta_down;
            if delta_up <= delta_down {
                self + Duration::nanoseconds(delta_up.into())
            } else {
                self - Duration::nanoseconds(delta_down.into())
            }
        } else {
            self // unchanged
        }
    }

    fn trunc_subsecs(self, digits: u16) -> T {
        let span = span_for_digits(digits);
        let delta_down = self.nanosecond() % span;
        if delta_down > 0 {
            self - Duration::nanoseconds(delta_down.into())
        } else {
            self // unchanged
        }
    }
}

// Return the maximum span in nanoseconds for the target number of digits.
fn span_for_digits(digits: u16) -> u32 {
    // fast lookup form of: 10^(9-min(9,digits))
    match digits {
        0 => 1_000_000_000,
        1 =>   100_000_000,
        2 =>    10_000_000,
        3 =>     1_000_000,
        4 =>       100_000,
        5 =>        10_000,
        6 =>         1_000,
        7 =>           100,
        8 =>            10,
        _ =>             1
    }
}

#[cfg(test)]
mod tests {
    use Timelike;
    use offset::{FixedOffset, TimeZone, Utc};
    use super::SubsecRound;

    #[test]
    fn test_round() {
        let pst = FixedOffset::east(8 * 60 * 60);
        let dt = pst.ymd(2018, 1, 11).and_hms_nano(10, 5, 13, 084_660_684);

        assert_eq!(dt.round_subsecs(10), dt);
        assert_eq!(dt.round_subsecs(9), dt);
        assert_eq!(dt.round_subsecs(8).nanosecond(), 084_660_680);
        assert_eq!(dt.round_subsecs(7).nanosecond(), 084_660_700);
        assert_eq!(dt.round_subsecs(6).nanosecond(), 084_661_000);
        assert_eq!(dt.round_subsecs(5).nanosecond(), 084_660_000);
        assert_eq!(dt.round_subsecs(4).nanosecond(), 084_700_000);
        assert_eq!(dt.round_subsecs(3).nanosecond(), 085_000_000);
        assert_eq!(dt.round_subsecs(2).nanosecond(), 080_000_000);
        assert_eq!(dt.round_subsecs(1).nanosecond(), 100_000_000);

        assert_eq!(dt.round_subsecs(0).nanosecond(), 0);
        assert_eq!(dt.round_subsecs(0).second(), 13);

        let dt = Utc.ymd(2018, 1, 11).and_hms_nano(10, 5, 27, 750_500_000);
        assert_eq!(dt.round_subsecs(9), dt);
        assert_eq!(dt.round_subsecs(4), dt);
        assert_eq!(dt.round_subsecs(3).nanosecond(), 751_000_000);
        assert_eq!(dt.round_subsecs(2).nanosecond(), 750_000_000);
        assert_eq!(dt.round_subsecs(1).nanosecond(), 800_000_000);

        assert_eq!(dt.round_subsecs(0).nanosecond(), 0);
        assert_eq!(dt.round_subsecs(0).second(), 28);
    }

    #[test]
    fn test_round_leap_nanos() {
        let dt = Utc.ymd(2016, 12, 31).and_hms_nano(23, 59, 59, 1_750_500_000);
        assert_eq!(dt.round_subsecs(9), dt);
        assert_eq!(dt.round_subsecs(4), dt);
        assert_eq!(dt.round_subsecs(2).nanosecond(), 1_750_000_000);
        assert_eq!(dt.round_subsecs(1).nanosecond(), 1_800_000_000);
        assert_eq!(dt.round_subsecs(1).second(), 59);

        assert_eq!(dt.round_subsecs(0).nanosecond(), 0);
        assert_eq!(dt.round_subsecs(0).second(), 0);
    }

    #[test]
    fn test_trunc() {
        let pst = FixedOffset::east(8 * 60 * 60);
        let dt = pst.ymd(2018, 1, 11).and_hms_nano(10, 5, 13, 084_660_684);

        assert_eq!(dt.trunc_subsecs(10), dt);
        assert_eq!(dt.trunc_subsecs(9), dt);
        assert_eq!(dt.trunc_subsecs(8).nanosecond(), 084_660_680);
        assert_eq!(dt.trunc_subsecs(7).nanosecond(), 084_660_600);
        assert_eq!(dt.trunc_subsecs(6).nanosecond(), 084_660_000);
        assert_eq!(dt.trunc_subsecs(5).nanosecond(), 084_660_000);
        assert_eq!(dt.trunc_subsecs(4).nanosecond(), 084_600_000);
        assert_eq!(dt.trunc_subsecs(3).nanosecond(), 084_000_000);
        assert_eq!(dt.trunc_subsecs(2).nanosecond(), 080_000_000);
        assert_eq!(dt.trunc_subsecs(1).nanosecond(), 0);

        assert_eq!(dt.trunc_subsecs(0).nanosecond(), 0);
        assert_eq!(dt.trunc_subsecs(0).second(), 13);

        let dt = pst.ymd(2018, 1, 11).and_hms_nano(10, 5, 27, 750_500_000);
        assert_eq!(dt.trunc_subsecs(9), dt);
        assert_eq!(dt.trunc_subsecs(4), dt);
        assert_eq!(dt.trunc_subsecs(3).nanosecond(), 750_000_000);
        assert_eq!(dt.trunc_subsecs(2).nanosecond(), 750_000_000);
        assert_eq!(dt.trunc_subsecs(1).nanosecond(), 700_000_000);

        assert_eq!(dt.trunc_subsecs(0).nanosecond(), 0);
        assert_eq!(dt.trunc_subsecs(0).second(), 27);
    }

    #[test]
    fn test_trunc_leap_nanos() {
        let dt = Utc.ymd(2016, 12, 31).and_hms_nano(23, 59, 59, 1_750_500_000);
        assert_eq!(dt.trunc_subsecs(9), dt);
        assert_eq!(dt.trunc_subsecs(4), dt);
        assert_eq!(dt.trunc_subsecs(2).nanosecond(), 1_750_000_000);
        assert_eq!(dt.trunc_subsecs(1).nanosecond(), 1_700_000_000);
        assert_eq!(dt.trunc_subsecs(1).second(), 59);

        assert_eq!(dt.trunc_subsecs(0).nanosecond(), 1_000_000_000);
        assert_eq!(dt.trunc_subsecs(0).second(), 59);
    }
}