1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
//! Basic combinators.

use std::iter::FromIterator;

use {ParseResult, Input};

use primitives::State;
use primitives::{IntoInner, InputBuffer, InputClone};
use iter::{EndState, EndStateTill, Iter, IterTill};


/// Applies the parser ``p`` exactly ``num`` times, propagating any error or incomplete state.
///
#[cfg_attr(feature = "verbose_error", doc = "
```
use chomp::{ParseResult, Error, Input, count, token, take_remainder};

let p1 = Input::new(b\"a  \");
let p2 = Input::new(b\"aa \");
let p3 = Input::new(b\"aaa\");

fn parse(i: Input<u8>) -> ParseResult<u8, Vec<u8>, Error<u8>> {
    count(i, 2, |i| token(i, b'a'))
}

assert_eq!(parse(p1).unwrap_err(), Error::Expected(b'a'));
assert_eq!(parse(p2).unwrap(), &[b'a', b'a']);

// TODO: Update once a proper way to extract data and remainder has been implemented
// a slightly odd way to obtain the remainder of the input stream, temporary:
let d: ParseResult<_, (_, Vec<_>), Error<_>> =
    parse(p3).bind(|i, d| take_remainder(i).bind(|i, r| i.ret((r, d))));
let (buf, data) = d.unwrap();

assert_eq!(buf, b\"a\");
assert_eq!(data, &[b'a', b'a']);
```
")]
#[inline]
pub fn count<'a, I, T, E, F, U>(i: Input<'a, I>, num: usize, p: F) -> ParseResult<'a, I, T, E>
  where I: Copy,
        U: 'a,
        F: FnMut(Input<'a, I>) -> ParseResult<'a, I, U, E>,
        T: FromIterator<U> {
    // If we have gotten an item, if this is false after from_iter we have failed
    let mut count = 0;
    let mut iter  = Iter::new(i, p);

    let result: T      = FromIterator::from_iter(iter.by_ref()
                                                 .take(num)
                                                 .inspect(|_| count = count + 1 ));
    let (buffer, last) = iter.end_state();

    if count == num {
        buffer.ret(result)
    } else {
        // Can only be less than num here since take() limits it.
        // Just propagate the last state from the iterator.
        match last {
            EndState::Incomplete(n) => buffer.incomplete(n),
            EndState::Error(b, e)     => buffer.replace(b).err(e),
        }
    }
}

/// Tries the parser ``f``, on success it yields the parsed value, on failure ``default`` will be
/// yielded instead.
///
/// Incomplete state is propagated. Backtracks on error.
///
/// ```
/// use chomp::{Input, option, token};
///
/// let p1 = Input::new(b"abc");
/// let p2 = Input::new(b"bbc");
///
/// assert_eq!(option(p1, |i| token(i, b'a'), b'd').unwrap(), b'a');
/// assert_eq!(option(p2, |i| token(i, b'a'), b'd').unwrap(), b'd');
/// ```
#[inline]
pub fn option<'a, I, T, E, F>(i: Input<'a, I>, f: F, default: T) -> ParseResult<'a, I, T, E>
  where I: 'a + Copy,
        F: FnOnce(Input<'a, I>) -> ParseResult<'a, I, T, E> {
    match f(i.clone()).into_inner() {
        State::Data(b, d)    => b.ret(d),
        State::Error(_, _)   => i.ret(default),
        State::Incomplete(n) => i.incomplete(n),
    }
}

/// Tries to match the parser ``f``, if ``f`` fails it tries ``g``. Returns the success value of
/// the first match, otherwise the error of the last one if both fail.
///
/// Incomplete state is propagated from the first one to report incomplete.
///
#[cfg_attr(feature = "verbose_error", doc = "
```
use chomp::{Input, Error, or, token};

let p1 = Input::new(b\"abc\");
let p2 = Input::new(b\"bbc\");
let p3 = Input::new(b\"cbc\");

assert_eq!(or(p1, |i| token(i, b'a'), |i| token(i, b'b')).unwrap(), b'a');
assert_eq!(or(p2, |i| token(i, b'a'), |i| token(i, b'b')).unwrap(), b'b');
assert_eq!(or(p3, |i| token(i, b'a'), |i| token(i, b'b')).unwrap_err(), Error::Expected(b'b'));
```
")]
#[inline]
pub fn or<'a, I, T, E, F, G>(i: Input<'a, I>, f: F, g: G) -> ParseResult<'a, I, T, E>
  where F: FnOnce(Input<'a, I>) -> ParseResult<'a, I, T, E>,
        G: FnOnce(Input<'a, I>) -> ParseResult<'a, I, T, E> {
    match f(i.clone()).into_inner() {
        State::Data(b, d)    => b.ret(d),
        State::Error(_, _)   => g(i),
        State::Incomplete(n) => i.incomplete(n),
    }
}

/// Parses many instances of ``f`` until it does no longer match, returning all matches.
///
/// Note: If the last parser succeeds on the last input item then this parser is still considered
/// incomplete as there might be more data to fill.
///
/// Note: Allocates data.
///
/// ```
/// use chomp::{ParseResult, Error, Input, token, many, take_while1};
///
/// let p = Input::new(b"a,bc,cd ");
///
/// let r: ParseResult<_, Vec<&[u8]>, Error<u8>> =
///     many(p, |i| take_while1(i, |c| c != b',' && c != b' ').bind(|i, c|
///         token(i, b',').bind(|i, _| i.ret(c))));
/// let v = r.unwrap();
///
/// assert_eq!(v.len(), 2);
/// assert_eq!(v[0], b"a");
/// assert_eq!(v[1], b"bc");
/// ```
#[inline]
pub fn many<'a, I, T, E, F, U>(i: Input<'a, I>, f: F) -> ParseResult<'a, I, T, E>
  where I: Copy,
        U: 'a,
        F: FnMut(Input<'a, I>) -> ParseResult<'a, I, U, E>,
        T: FromIterator<U> {
    let mut iter = Iter::new(i, f);

    let result: T = FromIterator::from_iter(iter.by_ref());

    match iter.end_state() {
        // Ok, last parser failed, we have iterated all.
        // Return remainder of buffer and the collected result
        (s, EndState::Error(_, _))   => s.ret(result),
        // Nested parser incomplete, propagate
        (s, EndState::Incomplete(n)) => if s.buffer().len() == 0 && s.is_last_slice() {
            s.ret(result)
        } else {
            s.incomplete(n)
        },
    }
}

/// Parses at least one instance of ``f`` and continues until it does no longer match,
/// returning all matches.
///
/// Note: If the last parser succeeds on the last input item then this parser is still considered
/// incomplete as there might be more data to fill.
///
/// Note: Allocates data.
///
#[cfg_attr(feature = "verbose_error", doc = "
```
use chomp::{ParseResult, Error, Input, token, many1, take_while1};

let p1 = Input::new(b\"a \");
let p2 = Input::new(b\"a, \");

fn parse(i: Input<u8>) -> ParseResult<u8, Vec<&[u8]>, Error<u8>> {
    many1(i, |i| take_while1(i, |c| c != b',' && c != b' ').bind(|i, c|
        token(i, b',').bind(|i, _| i.ret(c))))
}

assert_eq!(parse(p1).unwrap_err(), Error::Expected(b','));
assert_eq!(parse(p2).unwrap(), &[b\"a\"]);
```
")]
#[inline]
pub fn many1<'a, I, T, E, F, U>(i: Input<'a, I>, f: F) -> ParseResult<'a, I, T, E>
  where I: Copy,
        U: 'a,
        F: FnMut(Input<'a, I>) -> ParseResult<'a, I, U, E>,
        T: FromIterator<U> {
    // If we managed to parse anything
    let mut item = false;
    // If we have gotten an item, if this is false after from_iter we have failed
    let mut iter = Iter::new(i, f);

    let result: T = FromIterator::from_iter(iter.by_ref().inspect(|_| item = true ));

    if !item {
        match iter.end_state() {
            (s, EndState::Error(b, e))   => s.replace(b).err(e),
            (s, EndState::Incomplete(n)) => s.incomplete(n),
        }
    } else {
        match iter.end_state() {
            (s, EndState::Error(_, _))   => s.ret(result),
            // TODO: Indicate potentially more than 1?
            (s, EndState::Incomplete(n)) => if s.buffer().len() == 0 && s.is_last_slice() {
                s.ret(result)
            } else {
                s.incomplete(n)
            },
        }
    }
}

/// Applies the parser `R` zero or more times, separated by the parser `F`. All matches from `R`
/// will be collected into the type `T` implementing `IntoIterator`.
///
/// If the separator or parser registers error or incomplete this parser stops and yields the
/// collected value.
///
/// Incomplete will be propagated from `R` if end of input has not been read.
///
/// ```
/// use chomp::{Input, sep_by, token};
/// use chomp::ascii::decimal;
///
/// let i = Input::new(b"91;03;20");
///
/// let r: Vec<u8> = sep_by(i, decimal, |i| token(i, b';')).unwrap();
///
/// assert_eq!(r, vec![91, 03, 20]);
/// ```
#[inline]
pub fn sep_by<'a, I, T, E, R, F, U, N, V>(i: Input<'a, I>, mut p: R, mut sep: F) -> ParseResult<'a, I, T, E>
  where I: Copy,
        U: 'a,
        V: 'a,
        N: 'a,
        T: FromIterator<U>,
        E: From<N>,
        R: FnMut(Input<'a, I>) -> ParseResult<'a, I, U, E>,
        F: FnMut(Input<'a, I>) -> ParseResult<'a, I, V, N> {
    // If we have parsed at least one item
    let mut item = false;
    // Add sep in front of p if we have read at least one item
    let parser   = |i| (if item { sep(i).map(|_| ()) } else { i.ret(()) }).then(&mut p).inspect(|_| item = true);
    let mut iter = Iter::new(i, parser);

    let result: T = FromIterator::from_iter(iter.by_ref());

    match iter.end_state() {
        (s, EndState::Error(_, _))   => s.ret(result),
        // Nested parser incomplete, propagate
        // Only propagate if we can read more data
        (s, EndState::Incomplete(n)) => if s.is_last_slice() {
            s.ret(result)
        } else {
            s.incomplete(n)
        },
    }
}


/// Applies the parser `R` one or more times, separated by the parser `F`. All matches from `R`
/// will be collected into the type `T` implementing `IntoIterator`.
///
/// If the separator or parser registers error or incomplete this parser stops and yields the
/// collected value if at least one item has been read.
///
/// Incomplete will be propagated from `R` if end of input has not been read.
///
/// ```
/// use chomp::{Input, sep_by1, token};
/// use chomp::ascii::decimal;
///
/// let i = Input::new(b"91;03;20");
///
/// let r: Vec<u8> = sep_by1(i, decimal, |i| token(i, b';')).unwrap();
///
/// assert_eq!(r, vec![91, 03, 20]);
/// ```
#[inline]
pub fn sep_by1<'a, I, T, E, R, F, U, N, V>(i: Input<'a, I>, mut p: R, mut sep: F) -> ParseResult<'a, I, T, E>
  where I: Copy,
        U: 'a,
        V: 'a,
        N: 'a,
        T: FromIterator<U>,
        E: From<N>,
        R: FnMut(Input<'a, I>) -> ParseResult<'a, I, U, E>,
        F: FnMut(Input<'a, I>) -> ParseResult<'a, I, V, N> {
    // If we have parsed at least one item
    let mut item = false;
    // Wrap to end borrow of item
    let (result, state): (T, _) = {
        // Add sep in front of p if we have read at least one item
        let parser   = |i| (if item { sep(i).map(|_| ()) } else { i.ret(()) }).then(&mut p).inspect(|_| item = true);
        let mut iter = Iter::new(i, parser);

        (FromIterator::from_iter(iter.by_ref()), iter.end_state())
    };

    if !item {
        match state {
            (s, EndState::Error(b, e))   => s.replace(b).err(e),
            (s, EndState::Incomplete(n)) => s.incomplete(n),
        }
    } else {
        match state {
            (s, EndState::Error(_, _))   => s.ret(result),
            // Nested parser incomplete, propagate
            // Only propagate if we can read more data
            (s, EndState::Incomplete(n)) => if s.is_last_slice() {
                s.ret(result)
            } else {
                s.incomplete(n)
            },
        }
    }
}

/// Applies the parser `R` multiple times until the parser `F` succeeds and returns a value
/// populated by the values yielded by `R`. Consumes the matched part of `F`.
///
/// This parser is considered incomplete if the parser `R` is considered incomplete.
///
/// Errors from `R` are propagated.
///
/// ```
/// use chomp::{Input, ParseResult, many_till, any, token};
///
/// let i = Input::new(b"abc;def");
///
/// let r: ParseResult<_, Vec<u8>, _> = many_till(i, any, |i| token(i, b';'));
///
/// assert_eq!(r.unwrap(), vec![b'a', b'b', b'c']);
/// ```
#[inline]
pub fn many_till<'a, I, T, E, R, F, U, N, V>(i: Input<'a, I>, p: R, end: F) -> ParseResult<'a, I, T, E>
  where I: Copy,
        U: 'a,
        V: 'a,
        N: 'a,
        T: FromIterator<U>,
        R: FnMut(Input<'a, I>) -> ParseResult<'a, I, U, E>,
        F: FnMut(Input<'a, I>) -> ParseResult<'a, I, V, N> {
    let mut iter = IterTill::new(i, p, end);

    let result: T = FromIterator::from_iter(iter.by_ref());

    match iter.end_state() {
        (s, EndStateTill::EndSuccess)   => s.ret(result),
        // Nested parser error, propagate
        (s, EndStateTill::Error(b, e))   => s.replace(b).err(e),
        // Nested parser incomplete, propagate
        (s, EndStateTill::Incomplete(n)) => s.incomplete(n),
    }
}

/// Runs the given parser until it fails, discarding matched input.
///
/// Incomplete state will be propagated.
///
/// This is more efficient compared to using ``many`` and then just discarding the result as
/// ``many`` allocates a separate data structure to contain the data before proceeding.
///
/// ```
/// use chomp::{Input, skip_many, token};
///
/// let p = Input::new(b"aaaabc");
///
/// assert_eq!(skip_many(p, |i| token(i, b'a')).bind(|i, _| token(i, b'b')).unwrap(), b'b');
/// ```
#[inline]
pub fn skip_many<'a, I, T, E, F>(mut i: Input<'a, I>, mut f: F) -> ParseResult<'a, I, (), E>
  where T: 'a, F: FnMut(Input<'a, I>) -> ParseResult<'a, I, T, E> {
    loop {
        match f(i.clone()).into_inner() {
            State::Data(b, _)    => i = b,
            State::Error(_, _)   => break,
            State::Incomplete(n) => return i.incomplete(n),
        }
    }

    i.ret(())
}

/// Runs the given parser until it fails, discarding matched input, expects at least one match.
///
/// Incomplete state will be propagated. Will propagate the error if it occurs during the first
/// attempt.
///
/// This is more efficient compared to using ``many1`` and then just discarding the result as
/// ``many1`` allocates a separate data structure to contain the data before proceeding.
///
/// ```
/// use chomp::{Input, skip_many1, token};
///
/// let i1 = Input::new(b"aaaabc");
/// let i2 = Input::new(b"abc");
///
/// let p = |i| skip_many1(i, |i| token(i, b'a')).bind(|i, _| token(i, b'b'));
///
/// assert_eq!(p(i1).unwrap(), b'b');
/// assert_eq!(p(i2).unwrap(), b'b');
/// ```
///
/// ```should_panic
/// use chomp::{Input, skip_many1, token};
///
/// let i = Input::new(b"bc");
///
/// let p = |i| skip_many1(i, |i| token(i, b'a')).bind(|i, _| token(i, b'b'));
///
/// // Error:
/// assert_eq!(p(i).unwrap(), b'b');
/// ```
#[inline]
pub fn skip_many1<'a, I, T, E, F>(mut i: Input<'a, I>, mut f: F) -> ParseResult<'a, I, (), E>
  where T: 'a, F: FnMut(Input<'a, I>) -> ParseResult<'a, I, T, E> {
    let mut n = false;

    loop {
        match f(i.clone()).into_inner() {
            State::Data(b, _)    => {
                n = true;
                i = b;
            },
            State::Error(b, e)   => return if !n  {
                // Error during first attempt, propagate
                i.replace(b).err(e)
            } else {
                // Not the first attempt, exit skip_many1
                i.ret(())
            },
            State::Incomplete(n) => return i.incomplete(n),
        }
    }
}

/// Returns the result of the given parser as well as the slice which matched it.
///
/// ```
/// use chomp::{Input, matched_by};
/// use chomp::ascii::decimal;
///
/// let i = Input::new(b"123");
///
/// assert_eq!(matched_by(i, decimal).unwrap(), (&b"123"[..], 123u32));
/// ```
#[inline]
pub fn matched_by<'a, I, T, E, F>(i: Input<'a, I>, f: F) -> ParseResult<'a, I, (&'a [I], T), E>
  where T: 'a,
        F: FnOnce(Input<'a, I>) -> ParseResult<'a, I, T, E> {
    let buf = i.buffer();

    match f(i.clone()).into_inner() {
        State::Data(b, t) => {
            // b is remainder, find out how much the parser used
            let diff = buf.len() - b.buffer().len();
            let n    = &buf[..diff];

            b.ret((n, t))
        },
        State::Error(b, e)   => i.replace(b).err(e),
        State::Incomplete(n) => i.incomplete(n),
    }
}

/// Applies the parser `F` without consuming any input.
///
/// ```
/// use chomp::{Input, take};
/// use chomp::combinators::look_ahead;
///
/// let i = Input::new(b"testing");
///
/// let r = look_ahead(i, |i| take(i, 4)).bind(|i, t| take(i, 7).map(|u| (t, u)));
///
/// assert_eq!(r.unwrap(), (&b"test"[..], &b"testing"[..]));
/// ```
#[inline]
pub fn look_ahead<'a, I, T, E, F>(i: Input<'a, I>, f: F) -> ParseResult<'a, I, T, E>
  where F: FnOnce(Input<'a, I>) -> ParseResult<'a, I, T, E> {
    match f(i.clone()).into_inner() {
        State::Data(_, t)    => i.ret(t),
        State::Error(b, t)   => i.replace(b).err(t),
        State::Incomplete(n) => i.incomplete(n),
    }
}

#[cfg(test)]
mod test {
    use ParseResult;
    use primitives::State;
    use primitives::input::{new, DEFAULT, END_OF_INPUT};
    use primitives::IntoInner;
    use super::*;

    use parsers::{any, token, string};

    #[test]
    fn skip_many1_test() {
        assert_eq!(skip_many1(new(DEFAULT, b"aabc"), |i| token(i, b'a')).into_inner(), State::Data(new(DEFAULT, b"bc"), ()));
        assert_eq!(skip_many1(new(DEFAULT, b"abc"), |i| token(i, b'a')).into_inner(), State::Data(new(DEFAULT, b"bc"), ()));
        assert_eq!(skip_many1(new(DEFAULT, b"bc"), |i| i.err::<(), _>("error")).into_inner(), State::Error(b"bc", "error"));
        assert_eq!(skip_many1(new(DEFAULT, b"aaa"), |i| token(i, b'a')).into_inner(), State::Incomplete(1));
        assert_eq!(skip_many1(new(END_OF_INPUT, b"aabc"), |i| token(i, b'a')).into_inner(), State::Data(new(END_OF_INPUT, b"bc"), ()));
        assert_eq!(skip_many1(new(END_OF_INPUT, b"abc"), |i| token(i, b'a')).into_inner(), State::Data(new(END_OF_INPUT, b"bc"), ()));
        assert_eq!(skip_many1(new(END_OF_INPUT, b"bc"), |i| i.err::<(), _>("error")).into_inner(), State::Error(b"bc", "error"));
        // token is responsible for the incomplete
        assert_eq!(skip_many1(new(END_OF_INPUT, b"aaa"), |i| token(i, b'a')).into_inner(), State::Incomplete(1));
    }

    #[test]
    fn many_till_test() {
        assert_eq!(many_till(new(DEFAULT, b"abcd"), any, |i| token(i, b'c')).into_inner(), State::Data(new(DEFAULT, b"d"), vec![b'a', b'b']));
        let r: ParseResult<_, Vec<_>, _> = many_till(new(DEFAULT, b"abd"), any, |i| token(i, b'c'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<u8>, _> = many_till(new(DEFAULT, b"abcd"), |i| i.err(()), |i| token(i, b'c'));
        assert_eq!(r.into_inner(), State::Error(b"abcd", ()));

        // Variant to make sure error slice is propagated
        let mut n = 0;
        let r: ParseResult<_, Vec<_>, _> = many_till(new(DEFAULT, b"abcd"), |i| if n == 0 { n += 1; any(i).map_err(|_| "any err") } else { i.err("the error") }, |i| token(i, b'c'));
        assert_eq!(r.into_inner(), State::Error(b"bcd", "the error"));
    }

    #[test]
    fn matched_by_test() {
        assert_eq!(matched_by(new(DEFAULT, b"abc"), any).into_inner(), State::Data(new(DEFAULT, b"bc"), (&b"a"[..], b'a')));
        assert_eq!(matched_by(new(DEFAULT, b"abc"), |i| i.err::<(), _>("my error")).into_inner(), State::Error(&b"abc"[..], "my error"));
        assert_eq!(matched_by(new(DEFAULT, b"abc"), |i| any(i).map_err(|_| "any error").then(|i| i.err::<(), _>("my error"))).into_inner(), State::Error(&b"bc"[..], "my error"));
        assert_eq!(matched_by(new(DEFAULT, b""), any).into_inner(), State::Incomplete(1));
    }

    #[test]
    fn sep_by_test() {
        assert_eq!(sep_by(new(END_OF_INPUT, b""), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b""), vec![]));
        assert_eq!(sep_by(new(END_OF_INPUT, b"b"), |i| token(i, b'a'), |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b"b"), vec![]));
        assert_eq!(sep_by(new(END_OF_INPUT, b"a"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b""), vec![b'a']));
        assert_eq!(sep_by(new(END_OF_INPUT, b"a;c"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b""), vec![b'a', b'c']));
        assert_eq!(sep_by(new(END_OF_INPUT, b"a;c;"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b";"), vec![b'a', b'c']));
        assert_eq!(sep_by(new(END_OF_INPUT, b"a--c-"), any, |i| string(i, b"--")).into_inner(), State::Data(new(END_OF_INPUT, b"-"), vec![b'a', b'c']));
        assert_eq!(sep_by(new(END_OF_INPUT, b"abc"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b"bc"), vec![b'a']));
        assert_eq!(sep_by(new(END_OF_INPUT, b"a;bc"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b"c"), vec![b'a', b'b']));

        assert_eq!(sep_by(new(DEFAULT, b"abc"), any, |i| token(i, b';')).into_inner(), State::Data(new(DEFAULT, b"bc"), vec![b'a']));
        assert_eq!(sep_by(new(DEFAULT, b"a;bc"), any, |i| token(i, b';')).into_inner(), State::Data(new(DEFAULT, b"c"), vec![b'a', b'b']));

        // Incomplete becasue there might be another separator or item to be read
        let r: ParseResult<_, Vec<_>, _> = sep_by(new(DEFAULT, b""), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by(new(DEFAULT, b"a"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by(new(DEFAULT, b"a;"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by(new(DEFAULT, b"a;c"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by(new(DEFAULT, b"a;c;"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by(new(DEFAULT, b"a--c-"), any, |i| string(i, b"--"));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by(new(DEFAULT, b"aaa--a"), |i| string(i, b"aaa"), |i| string(i, b"--"));
        assert_eq!(r.into_inner(), State::Incomplete(2));

    }

    #[test]
    fn sep_by1_test() {
        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(END_OF_INPUT, b""), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<()>, _> = sep_by1(new(END_OF_INPUT, b"b"), |i| i.err("my err"), |i| token(i, b';').map_err(|_| "token_err"));
        assert_eq!(r.into_inner(), State::Error(b"b", "my err"));

        assert_eq!(sep_by1(new(END_OF_INPUT, b"a"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b""), vec![b'a']));
        assert_eq!(sep_by1(new(END_OF_INPUT, b"a;c"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b""), vec![b'a', b'c']));
        assert_eq!(sep_by1(new(END_OF_INPUT, b"a;c;"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b";"), vec![b'a', b'c']));
        assert_eq!(sep_by1(new(END_OF_INPUT, b"a--c-"), any, |i| string(i, b"--")).into_inner(), State::Data(new(END_OF_INPUT, b"-"), vec![b'a', b'c']));
        assert_eq!(sep_by1(new(END_OF_INPUT, b"abc"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b"bc"), vec![b'a']));
        assert_eq!(sep_by1(new(END_OF_INPUT, b"a;bc"), any, |i| token(i, b';')).into_inner(), State::Data(new(END_OF_INPUT, b"c"), vec![b'a', b'b']));

        assert_eq!(sep_by1(new(DEFAULT, b"abc"), any, |i| token(i, b';')).into_inner(), State::Data(new(DEFAULT, b"bc"), vec![b'a']));
        assert_eq!(sep_by1(new(DEFAULT, b"a;bc"), any, |i| token(i, b';')).into_inner(), State::Data(new(DEFAULT, b"c"), vec![b'a', b'b']));

        // Incomplete becasue there might be another separator or item to be read
        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(DEFAULT, b""), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(DEFAULT, b"a"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(DEFAULT, b"a;"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(DEFAULT, b"a;c"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(DEFAULT, b"a;c;"), any, |i| token(i, b';'));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(DEFAULT, b"a--c-"), any, |i| string(i, b"--"));
        assert_eq!(r.into_inner(), State::Incomplete(1));

        let r: ParseResult<_, Vec<_>, _> = sep_by1(new(DEFAULT, b"aaa--a"), |i| string(i, b"aaa"), |i| string(i, b"--"));
        assert_eq!(r.into_inner(), State::Incomplete(2));
    }

    #[test]
    fn look_ahead_test() {
        assert_eq!(look_ahead(new(DEFAULT, b"abc"), any).into_inner(), State::Data(new(DEFAULT, b"abc"), b'a'));
        assert_eq!(look_ahead(new(DEFAULT, b"a"), |i| string(i, b"abc")).into_inner(), State::Incomplete(2));
        assert_eq!(look_ahead(new(DEFAULT, b"aa"), |i| token(i, b'a').then(|i| token(i, b'b')).map_err(|_| "err")).into_inner(), State::Error(b"a", "err"));
    }
}