1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
//! Virtual machine implementation

extern crate rand;

use std::io::{Read, Write, BufWriter};
use error::Chip8Error;
use instructions::Register;
use instructions::{RawInstruction, Instruction};
use std::slice::Chunks;

use rand::Rng;

/// Size of the RAM in bytes
const RAM_SIZE: usize = 4096;
/// Depth of the stack
const STACK_SIZE: usize = 256;
/// Number of data registers, i.e. `V0` .. `VF`
const NUM_DATA_REGISTERS: usize = 16;
/// Memory address for programm (ROM) start
const PROGRAM_START: usize = 0x200;
/// CPU clock speed
const CLOCK_HZ: f32 = 600.0;

/// Memory address of built-in font sprites
const FONT_ADDR: usize = 0;
/// Number of rows in one font sprite
const FONT_HEIGHT: usize = 5;
/// Size of one font sprite
const FONT_BYTES: usize = FONT_HEIGHT * 16;
/// Data of the built-in font
const FONT: [u8; FONT_BYTES] = [
	0xF0, 0x90, 0x90, 0x90, 0xF0, // 0
	0x20, 0x60, 0x20, 0x20, 0x70, // 1
	0xF0, 0x10, 0xF0, 0x80, 0xF0, // 2
	0xF0, 0x10, 0xF0, 0x10, 0xF0, // 3
	0x90, 0x90, 0xF0, 0x10, 0x10, // 4
	0xF0, 0x80, 0xF0, 0x10, 0xF0, // 5
	0xF0, 0x80, 0xF0, 0x90, 0xF0, // 6
	0xF0, 0x10, 0x20, 0x40, 0x40, // 7
	0xF0, 0x90, 0xF0, 0x90, 0xF0, // 8
	0xF0, 0x90, 0xF0, 0x10, 0xF0, // 9
	0xF0, 0x90, 0xF0, 0x90, 0x90, // A
	0xE0, 0x90, 0xE0, 0x90, 0xE0, // B
	0xF0, 0x80, 0x80, 0x80, 0xF0, // C
	0xE0, 0x90, 0x90, 0x90, 0xE0, // D
	0xF0, 0x80, 0xF0, 0x80, 0xF0, // E
	0xF0, 0x80, 0xF0, 0x80, 0x80, // F
];
/// Width of the screen in pixels
const SCREEN_WIDTH: usize = 64;
/// Height of the screen in pixels
const SCREEN_HEIGHT: usize = 32;
/// Total number of pixels of the screen
const SCREEN_PIXELS: usize = SCREEN_WIDTH * SCREEN_HEIGHT;

/// Number of keys on the keypad
const NUM_KEYS: usize = 16;

/// Virtual machine
///
/// The virtual machine manages state like its registers,
/// the RAM, stack, screen pixels, pressed keys as well as
/// timers and some internal state.
// This would require "impl<T> Clone for [T; ARBITRARY_CONSTANT] where T: Copy"
// One can probably do this with a macro, but for now I'm too lazy.
//#[derive(Clone, Copy)]
pub struct Vm {
    reg: [u8; NUM_DATA_REGISTERS],
    i: usize,
    pc: usize,
    sp: usize,
    stack: [usize; STACK_SIZE],
    ram: [u8; RAM_SIZE],

    timer: u8,
    t_tick: f32,

    sound_timer: u8,
    st_tick: f32,

    screen: [u8; SCREEN_PIXELS],
    keys: [u8; NUM_KEYS],
    waiting_on_key: Option<Register>,
}

impl Vm {
    /// Creates a new `Vm` instance with default state
    pub fn new() -> Vm {
        let mut vm = Vm {
            reg: [0; NUM_DATA_REGISTERS],
            i: 0,
            pc: PROGRAM_START,
            sp: 0,
            stack: [0; STACK_SIZE],
            ram: [0; RAM_SIZE],

            timer: 0,
            t_tick: 0.0,

            sound_timer: 0,
            st_tick: 0.0,

            screen: [0; SCREEN_PIXELS],
            keys: [0; NUM_KEYS],
            waiting_on_key: None,
        };
        {
            let mut ram = BufWriter::new(&mut vm.ram[FONT_ADDR..(FONT_ADDR + FONT_BYTES)]);
            ram.write_all(FONT.as_ref()).unwrap();
            debug!("Initialized VM with built-in font");
        }
        vm
    }

    /// Loads the ROM contents from `reader` into RAM at the program start address
    pub fn load_rom(&mut self, reader: &mut Read) -> Result<usize, Chip8Error> {
        let mut rom = Vec::new();
        try!(reader.read_to_end(&mut rom));
        let rom_len = rom.len();
        let available_ram = RAM_SIZE - PROGRAM_START;
        if rom_len > available_ram {
            error!("ROM size ({}) is larger than available RAM ({})!", rom_len, available_ram);
            return Err(Chip8Error::Io("ROM was larger than available RAM", None))
        }
        // TODO: ROM needs to contain at least one instruction to be valid
        let mut ram = BufWriter::new(&mut self.ram[PROGRAM_START..RAM_SIZE]);
        try!(ram.write_all(rom.as_ref()));
        debug!("Loaded ROM of size {}", rom_len);
        return Ok(rom_len);
    }

    #[allow(dead_code)]
    pub fn dump_ram(&self, writer: &mut Write) {
        writer.write_all(&self.ram).unwrap();
    }

    /// Returns `True` if the sound timer is active
    pub fn beeping(&self) -> bool {
        self.sound_timer > 0
    }

    /// Marks the key with index `idx` as being set
    pub fn set_key(&mut self, idx: u8) {
        debug!("Set key {}", idx);
        self.keys[idx as usize] = 1;
        if let Some(vx) = self.waiting_on_key {
            debug!("No longer waiting on key");
            self.reg[vx as usize] = idx;
            self.waiting_on_key = None;
        }
    }

    /// Marks they key with index `idx` as being unset
    pub fn unset_key(&mut self, idx: u8) {
        debug!("Unset key {}", idx);
        self.keys[idx as usize] = 0;
    }

    fn exec(&mut self, ins: &Instruction) -> bool {
        use instructions::Instruction::*;

        match *ins {
            // Sys(addr) intentionally left unimplemented.

            Clear => {
                for b in self.screen.iter_mut() {
                    *b = 0;
                }
            },
            Return => {
                self.pc = self.stack[self.sp];
                self.sp-=1;
            },
            Jump(addr) => {
                let idle = self.pc-2 == addr.bits as usize;
                self.pc = addr.bits as usize;
                if idle { return true; }
            }
            Call(addr) => {
                self.sp+=1;
                self.stack[self.sp] = self.pc;
                self.pc = addr.bits as usize;
            },
            SkipEqualK(vx, k) => {
                if self.reg[vx as usize] == k {
                    self.pc += 2;
                }
            },
            SkipNotEqualK(vx, k) => {
                if self.reg[vx as usize] != k {
                    self.pc += 2;
                }
            },
            SkipEqual(vx, vy) => {
                let x = self.reg[vx as usize];
                let y = self.reg[vy as usize];
                if x == y {
                    self.pc += 2;
                }
            },
            SetK(vx, byte) => {
                self.reg[vx as usize] = byte;
            },
            AddK(vx, byte) => {
                self.reg[vx as usize] = self.reg[vx as usize].wrapping_add(byte);
            },
            Set(vx, vy) => self.reg[vx as usize] = self.reg[vy as usize],
            Or(vx, vy)  => self.reg[vx as usize] |= self.reg[vy as usize],
            And(vx, vy) => self.reg[vx as usize] &= self.reg[vy as usize],
            XOr(vx, vy) => self.reg[vx as usize] ^= self.reg[vy as usize],
            Add(vx, vy) => {
                let x = self.reg[vx as usize] as u16;
                let y = self.reg[vy as usize] as u16;
                let res = x + y;

                // VF is carryover
                self.reg[Register::VF as usize] = (res > 255) as u8;

                self.reg[vx as usize] = res as u8;
            },
            Sub(vx, vy) => {
                let x = self.reg[vx as usize];
                let y = self.reg[vy as usize];

                // VF is Not Borrow i.e. x > y
                self.reg[Register::VF as usize] = (x > y) as u8;

                self.reg[vx as usize] = x.wrapping_sub(y);
            },
            ShiftRight(vx, vy) => {
                let y = self.reg[vy as usize];

                // VF is lsb before shift
                self.reg[Register::VF as usize] = 0x1 & y;

                self.reg[vx as usize] = y >> 1;
            },
            SubInv(vx, vy) => {
                let x = self.reg[vx as usize];
                let y = self.reg[vy as usize];

                // VF is Not Borrow i.e. y > x
                self.reg[Register::VF as usize] = (y > x) as u8;

                self.reg[vx as usize] = y.wrapping_sub(x);
            },
            ShiftLeft(vx, vy) => {
                let y = self.reg[vy as usize];

                // VF is msb before shift
                self.reg[Register::VF as usize] = y >> 7;

                self.reg[vx as usize] = y << 1;
            }
            SkipNotEqual(vx, vy) => {
                let x = self.reg[vx as usize];
                let y = self.reg[vy as usize];
                if x != y {
                    self.pc += 2;
                }
            },
            LoadI(addr) => {
                self.i = addr.bits as usize;
            },
            LongJump(addr) => {
                self.pc = (self.reg[Register::V0 as usize] as u16 + addr.bits) as usize;
            },
            Rand(vx, byte) => {
                self.reg[vx as usize] = rand::thread_rng().gen::<u8>() & byte;
            }
            Draw(vx, vy, n) => {
                let x = self.reg[vx as usize] as usize;
                let y = self.reg[vy as usize] as usize;
                let i = self.i;
                let n = n.bits as usize;

                let sprite = &self.ram[i..i+n];

                self.reg[Register::VF as usize] = 0;
                for (sy, byte) in sprite.iter().enumerate() {
                    let dy = (y + sy) % SCREEN_HEIGHT;
                    for sx in 0usize..8 {
                        let px = (*byte >> (7 - sx)) & 0b00000001;
                        let dx = (x + sx) % SCREEN_WIDTH;
                        let idx = dy * SCREEN_WIDTH + dx;
                        self.screen[idx] ^= px;

                        // Vf is if there was a collision
                        self.reg[Register::VF as usize] |= (self.screen[idx] == 0 && px == 1) as u8;
                    }
                }
            },
            SkipPressed(vx) => {
                let idx = self.reg[vx as usize];
                if self.keys[idx as usize] == 1 {
                    self.pc += 2;
                }
            }
            SkipNotPressed(vx) => {
                let idx = self.reg[vx as usize];
                if self.keys[idx  as usize] != 1 {
                    self.pc += 2;
                }
            }
            GetTimer(vx) => {
                self.reg[vx as usize] = self.timer;
            },
            WaitKey(vx) => {
                self.waiting_on_key = Some(vx);
            },
            SetTimer(vx) => {
                self.timer = self.reg[vx as usize];
                self.t_tick = 1.0 / 60.0;
            },
            SetSoundTimer(vx) => {
                self.sound_timer = self.reg[vx as usize];
                self.st_tick = 1.0 / 60.0;
            },
            AddToI(vx) => {
                self.i += self.reg[vx as usize] as usize;
            },
            LoadHexGlyph(vx) => {
                let x = self.reg[vx as usize];
                self.i = FONT_ADDR + x as usize * FONT_HEIGHT;
            }
            StoreBCD(vx) => {
                let mut x = self.reg[vx as usize];

                let mut place = 100;
                for i in 0usize..3 {
                    let bcd = x / place;
                    self.ram[self.i + i] = bcd;
                    x -= bcd * place;
                    place /= 10;
                }
            }
            StoreRegisters(vx) => {
                let vx = vx as usize;
                let i = self.i;

                let mut dst = &mut self.ram[i..i+vx+1];
                for (x,b) in dst.iter_mut().enumerate() {
                    *b = self.reg[x];
                }
                self.i += vx+1;
            },
            LoadRegisters(vx) => {
                let vx = vx as usize;
                let i = self.i;

                let src = &self.ram[i..i+vx+1];
                for (x,b) in src.iter().enumerate() {
                    self.reg[x] = *b;
                }
                self.i += vx+1;
            },
            ref other => {
                debug!("Instruction not implemented {:?} skipping...", other)
            }
        }
        return false;
    }

    fn time_step(&mut self, dt:f32) {
        if self.timer > 0 {
            self.t_tick -= dt;
            if self.t_tick <= 0.0 {
                self.timer -= 1;
                self.t_tick = 1.0 / 60.0;
            }
        }

        if self.sound_timer > 0 {
            self.st_tick -= dt;
            if self.st_tick <= 0.0 {
                self.sound_timer -= 1;
                self.st_tick = 1.0 / 60.0;
            }
        }
    }

    // dt: Time in seconds since last step
    /// Executes remaining instructions since the last step
    pub fn step(&mut self, dt:f32) {

        let sub_steps = (CLOCK_HZ * dt).round() as usize;
        let ddt = dt / sub_steps as f32;

        for step in 0..sub_steps {
            trace!("Executing step {}/{}", step, sub_steps);
            self.time_step(ddt);
            if self.waiting_on_key.is_some() {
                debug!("Cancel remaining execution steps while waiting for key");
                return;
            }

            let raw = {
                let codes = &self.ram[self.pc..self.pc+2];
                ((codes[0] as u16) << 8) | codes[1] as u16
            };
            let raw_ins = RawInstruction::new(raw);
            self.pc += 2;
            self.exec(&Instruction::from_raw(&raw_ins));
        }
    }

    /// Returns the pixel rows of the screen
    pub fn screen_rows<'a>(&'a self) -> Chunks<'a, u8> {
        self.screen.chunks(SCREEN_WIDTH)
    }

    /// Prints the current screen pixels to `stdout`
    #[allow(dead_code)]
    pub fn print_screen(&self) {
        for row in self.screen.chunks(SCREEN_WIDTH) {
            println!("");
            for byte in row.iter() {
                match *byte {
                    0x0 => print!("░"),
                    _ => print!("▓")
                }
            }
        }
    }

    // This needs experimental slice patterns and is unused anyways
    /*
    /// Prints a disassembly of the entire RAM to `stdout`
    #[allow(dead_code)]
    pub fn print_disassembly(&self) {
        for i in self.ram.chunks(2) {
            match i {
                [0, 0] => continue,
                [h, l] => {
                    let raw_ins = RawInstruction::new(((h as u16) << 8) | l as u16);
                    println!("raw bits: 0x{:X}", raw_ins.bits());
                    println!("instruction: {:?}", Instruction::from_raw(&raw_ins));
                    println!("addr: 0x{:X}", raw_ins.addr().bits);
                    println!("x: 0x{:X}", raw_ins.x() as u8);
                    println!("y: 0x{:X}", raw_ins.y() as u8);
                    println!("n_high: 0x{:X}", raw_ins.n_high().bits);
                    println!("n_low: 0x{:X}", raw_ins.n_low().bits);
                    println!("k: 0x{:X}\n", raw_ins.k());
                },
                _ => continue
            }
        }
    }
    */
}

#[cfg(test)]
mod tests {
    use super::*;
    use instructions::*;
    use instructions::Register::*;

    macro_rules! reg_test {
        (
            $name:ident {
                before: {$($reg_before:expr => $reg_before_val:expr),+},
                after:  {$($reg_after:expr => $reg_after_val:expr),+},
                overflow: $over:expr,
                ins: $ins:expr
            }
        ) =>
        (
            //let mut vm = Vm::new();
            #[test]
            fn $name() {
                let mut vm = Vm::new();
                $(
                    vm.reg[$reg_before as usize] = $reg_before_val;
                )+
                vm.exec(&$ins);
                $(
                    assert!(vm.reg[$reg_after as usize] == $reg_after_val);
                )+
                assert!(vm.reg[VF as usize] == $over, "overflow was {}, wanted {}", vm.reg[VF as usize], $over);
            }
        )
    }

    // Add
    reg_test!(
        add_vx {
        before: { V2 => 0xFE, V3 => 0x01 },
        after: { V2 => 0xFF, V3 => 0x01 },
        overflow: 0,
        ins: Instruction::Add(V2, V3)
    });

    reg_test!(
        add_vx_overflows {
        before: { V2 => 0xFF, V3 => 0x01 },
        after: { V2 => 0x00, V3 => 0x01 },
        overflow: 1,
        ins: Instruction::Add(V2, V3)
    });

    // AddK
    reg_test!(
        add_k {
        before: { V0 => 0x09 },
        after: { V0 => 0x0B },
        overflow: 0,
        ins: Instruction::AddK(V0, 2)
    });

    reg_test!(
        add_k_overflows {
        before: { V0 => 0xFF },
        after: { V0 => 0x01 },
        overflow: 0, // Un-intuitive but not spec'd to set overflow
        ins: Instruction::AddK(V0, 2)
    });

    // Sub
    reg_test!(
        sub {
        before: { V0 => 0x3, V1 => 0x2 },
        after:  { V0 => 0x1, V1 => 0x2 },
        overflow: 1, // Defined as not-borrowed
        ins: Instruction::Sub(V0, V1)
    });

    reg_test!(
        sub_borrow {
        before: { V0 => 0x3, V1 => 0x5 },
        after:  { V0 => 0xFE, V1 => 0x5 },
        overflow: 0, // Defined as not-borrowed
        ins: Instruction::Sub(V0, V1)
    });

    // SubInv
    reg_test!(
        sub_inv {
        before: { V0 => 0x2, V1 => 0x3 },
        after:  { V0 => 0x1, V1 => 0x3 },
        overflow: 1, // Defined as not-borrowed
        ins: Instruction::SubInv(V0, V1)
    });

    reg_test!(
        sub_inv_borrow {
        before: { V0 => 0x5, V1 => 0x3 },
        after:  { V0 => 0xFE, V1 => 0x3 },
        overflow: 0, // Defined as not-borrowed
        ins: Instruction::SubInv(V0, V1)
    });

    // ShiftLeft
    reg_test!(
        shiftl_vx_vy {
        before: { V2 => 0xBB, V3 => 0x02 },
        after:  { V2 => 0x04, V3 => 0x02 },
        overflow: 0,
        ins: Instruction::ShiftLeft(V2, V3)
    });

    reg_test!(
        shiftl_vx_inplace {
        before: { V2 => 0b0111_0111 },
        after:  { V2 => 0b1110_1110 },
        overflow: 0,
        ins: Instruction::ShiftLeft(V2, V2)
    });

    reg_test!(
        shiftl_vx_inplace_overflow {
        before: { V2 => 0b1111_1111 },
        after:  { V2 => 0b1111_1110 },
        overflow: 1,
        ins: Instruction::ShiftLeft(V2, V2)
    });

    // ShiftRight
    reg_test!(
        shiftr_vx_vy {
        before: { V2 => 0xBB, V3 => 0x04 },
        after:  { V2 => 0x02, V3 => 0x04 },
        overflow: 0,
        ins: Instruction::ShiftRight(V2, V3)
    });

    reg_test!(
        shiftr_vx_inplace {
        before: { V2 => 0b1110_1110 },
        after:  { V2 => 0b0111_0111 },
        overflow: 0,
        ins: Instruction::ShiftRight(V2, V2)
    });

    reg_test!(
        shiftr_vx_inplace_overflow {
        before: { V2 => 0b1111_1111 },
        after:  { V2 => 0b0111_1111 },
        overflow: 1,
        ins: Instruction::ShiftRight(V2, V2)
    });

    #[test]
    fn oversized_rom() {
        use std::io::Cursor;

        let mut vm = Vm::new();
        let rom = vec![0; super::RAM_SIZE + 1];

        assert!(vm.load_rom(&mut Cursor::new(rom)).is_err());
    }
}