Struct chfft::CFft1D [] [src]

pub struct CFft1D<T> { /* fields omitted */ }

Perform a complex-to-complex one-dimensional Fourier transform

Example

extern crate chfft;
extern crate num;
use num::Complex;
use chfft::CFft1D;

fn main() {
    let input = [Complex::new(2.0, 0.0), Complex::new(1.0, 1.0),
                 Complex::new(0.0, 3.0), Complex::new(2.0, 4.0)];

    let mut fft = CFft1D::<f64>::with_len(input.len());

    let output = fft.forward(&input);

    println!("the transform of {:?} is {:?}", input, output);
}

Methods

impl<T: Float + FloatConst + NumAssign> CFft1D<T>
[src]

[src]

Returns a instances to execute FFT

use chfft::CFft1D;
let mut fft = CFft1D::<f64>::new();

[src]

Returns a instances to execute length initialized FFT

use chfft::CFft1D;
let mut fft = CFft1D::<f64>::with_len(1024);

[src]

Reinitialize length

use chfft::CFft1D;
let mut fft = CFft1D::<f64>::with_len(1024);

// reinitialize
fft.setup(2048);

[src]

The 1 scaling factor forward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.forward(&input);

[src]

The 1 scaling factor forward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.forward0(&input);

[src]

The $\frac 1 {\sqrt n}$ scaling factor forward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.forwardu(&input);

[src]

The $\frac 1 n$ scaling factor forward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.forwardn(&input);

[src]

The $\frac 1 n$ scaling factor backward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.backward(&input);

[src]

The 1 scaling factor backward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.backward0(&input);

[src]

The $\frac 1 {\sqrt n}$ scaling factor backward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.backwardu(&input);

[src]

The $\frac 1 n$ scaling factor backward transform

extern crate chfft;
extern crate num;

let input = [num::Complex::new(2.0, 0.0), num::Complex::new(1.0, 1.0),
             num::Complex::new(0.0, 3.0), num::Complex::new(2.0, 4.0)];

let mut fft = chfft::CFft1D::<f64>::with_len(input.len());
let output = fft.backwardn(&input);