1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//! This crates provides a performant iterator over a linear range of
//! characters.
//!
//! The iterator is inclusive of its endpoint, and correctly handles
//! the surrogate range (`0xD800`-`0xDFFF`). This induces only one
//! extra branch (or conditional-move) compared to a direct `x..y`
//! integer iterator that doesn't handle the surrogate range.
//!
//! [Source](https://github.com/huonw/char-iter)
//!
//! # Installation
//!
//! Add this to your Cargo.toml:
//!
//! ```toml
//! [dependencies]
//! char-iter = "0.1"
//! ```
//!
//! # Examples
//!
//! ```rust
//! let v: Vec<char> = char_iter::new('a', 'f').collect();
//! assert_eq!(v, &['a', 'b', 'c', 'd', 'e', 'f']);
//! ```
//!
//! Reverse iteration is supported:
//!
//! ```rust
//! // (codepoints 224 to 230)
//! let v: Vec<char> = char_iter::new('à', 'æ').rev().collect();
//! assert_eq!(v, &['æ', 'å', 'ä', 'ã', 'â', 'á', 'à']);
//! ```
//!
//! The surrogate range is skipped:
//!
//! ```rust
//! let v: Vec<char> = char_iter::new('\u{D7FF}', '\u{E000}').collect();
//! // 0xD800, ... 0xDFFF are missing
//! assert_eq!(v, &['\u{D7FF}', '\u{E000}']);
//! ```

#![cfg_attr(all(test, feature = "bench"), feature(test))]

/// An iterator over a linear range of characters.
///
/// This is constructed by the `new` function at the top level.
pub struct Iter {
    start: char,
    end: char,
    finished: bool,
}

/// Create a new iterator over the characters (specifically Unicode
/// Scalar Values) from `start` to `end`, inclusive.
///
/// # Panics
///
/// This panics if `start > end`.
pub fn new(start: char, end: char) -> Iter {
    assert!(start <= end);
    Iter {
        start: start,
        end: end,
        finished: false
    }
}

const SUR_START: u32 = 0xD800;
const SUR_END: u32 = 0xDFFF;
const BEFORE_SUR: u32 = SUR_START - 1;
const AFTER_SUR: u32 = SUR_END + 1;

enum Dir { Forward, Backward }

#[inline(always)]
fn step(c: char, d: Dir) -> char {
    let val = c as u32;
    let new_val = match d {
        Dir::Forward => if val == BEFORE_SUR {AFTER_SUR} else {val + 1},
        Dir::Backward => if val == AFTER_SUR {BEFORE_SUR} else {val - 1},
    };
    debug_assert!(std::char::from_u32(new_val).is_some());
    unsafe {std::mem::transmute(new_val)}
}

impl Iterator for Iter {
    type Item = char;

    fn next(&mut self) -> Option<char> {
        if self.finished {
            return None
        }
        let ret = Some(self.start);
        if self.start == self.end {
            self.finished = true;
        } else {
            self.start = step(self.start, Dir::Forward)
        }
        ret
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = if self.finished {
            0
        } else {
            let start = self.start as u32;
            let end = self.end as u32;
            let naive_count = (end - start + 1) as usize;
            if start <= BEFORE_SUR && end >= AFTER_SUR {
                naive_count - (SUR_END - SUR_START + 1) as usize
            } else {
                naive_count
            }
        };
        (len, Some(len))
    }
}
impl DoubleEndedIterator for Iter {
    fn next_back(&mut self) -> Option<char> {
        if self.finished {
            return None
        }
        let ret = Some(self.end);
        if self.start == self.end {
            self.finished = true;
        } else {
            self.end = step(self.end, Dir::Backward)
        }
        ret
    }
}

impl ExactSizeIterator for Iter {}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn smoke() {
        let v: Vec<char> = new('a', 'f').collect();
        assert_eq!(v, &['a', 'b', 'c', 'd', 'e', 'f']);
    }
    #[test]
    fn smoke_rev() {
        let v: Vec<char> = new('a', 'f').rev().collect();
        assert_eq!(v, &['f', 'e', 'd', 'c', 'b', 'a']);
    }
    #[test]
    fn smoke_size_hint() {
        let mut iter = new('a', 'f');
        assert_eq!(iter.size_hint(), (6, Some(6)));
        for i in (0..6).rev() {
            iter.next();
            assert_eq!(iter.size_hint(), (i, Some(i)));
        }
        iter.next();
        assert_eq!(iter.size_hint(), (0, Some(0)));
    }
    #[test]
    fn smoke_rev_size_hint() {
        let mut iter = new('a', 'f').rev();
        assert_eq!(iter.size_hint(), (6, Some(6)));
        for i in (0..6).rev() {
            iter.next();
            assert_eq!(iter.size_hint(), (i, Some(i)));
        }
        iter.next();
        assert_eq!(iter.size_hint(), (0, Some(0)));
    }
    #[test]
    fn equal() {
        let v: Vec<char> = new('a', 'a').collect();
        assert_eq!(v, &['a']);
    }
    #[test]
    fn equal_rev() {
        let v: Vec<char> = new('a', 'a').rev().collect();
        assert_eq!(v, &['a']);
    }
    #[test]
    fn equal_size_hint() {
        let mut iter = new('a', 'a');
        assert_eq!(iter.size_hint(), (1, Some(1)));
        for i in (0..1).rev() {
            iter.next();
            assert_eq!(iter.size_hint(), (i, Some(i)));
        }
        iter.next();
        assert_eq!(iter.size_hint(), (0, Some(0)));
    }
    #[test]
    fn equal_rev_size_hint() {
        let mut iter = new('a', 'a').rev();
        assert_eq!(iter.size_hint(), (1, Some(1)));
        for i in (0..1).rev() {
            iter.next();
            assert_eq!(iter.size_hint(), (i, Some(i)));
        }
        iter.next();
        assert_eq!(iter.size_hint(), (0, Some(0)));
    }

    const S: char = '\u{D7FF}';
    const E: char = '\u{E000}';
    #[test]
    fn surrogate() {
        let v: Vec<char> = new(S, E).collect();
        assert_eq!(v, &[S, E]);
    }
    #[test]
    fn surrogate_rev() {
        let v: Vec<char> = new(S, E).rev().collect();
        assert_eq!(v, &[E, S]);
    }
    #[test]
    fn surrogate_size_hint() {
        let mut iter = new(S, E);
        assert_eq!(iter.size_hint(), (2, Some(2)));
        for i in (0..2).rev() {
            iter.next();
            assert_eq!(iter.size_hint(), (i, Some(i)));
        }
        iter.next();
        assert_eq!(iter.size_hint(), (0, Some(0)));
    }
    #[test]
    fn surrogate_rev_size_hint() {
        let mut iter = new(S, E).rev();
        assert_eq!(iter.size_hint(), (2, Some(2)));
        for i in (0..2).rev() {
            iter.next();
            assert_eq!(iter.size_hint(), (i, Some(i)));
        }
        iter.next();
        assert_eq!(iter.size_hint(), (0, Some(0)));
    }

    #[test]
    fn full_range() {
        let iter = new('\u{0}', '\u{10FFFF}');
        let mut count = 1_114_112 - 2048;
        assert_eq!(iter.size_hint(), (count, Some(count)));

        for (i, c) in (0..0xD800).chain(0xE000..0x10FFFF + 1).zip(iter) {
            assert_eq!(::std::char::from_u32(i).unwrap(), c);
            count -= 1;
        }
        assert_eq!(count, 0);
    }

    #[should_panic]
    #[test]
    fn invalid() {
        new('b','a');
    }
}
#[cfg(all(test, feature = "bench"))]
mod benches {
    use super::*;
    extern crate test;

    #[bench]
    fn count(b: &mut test::Bencher) {
        b.iter(|| new('\u{0}', '\u{10FFFF}').count())
    }
    #[bench]
    fn count_baseline(b: &mut test::Bencher) {
        // this isn't the same range or the same length, but it's
        // close enough.
        b.iter(|| (0..0x10FFFF + 1).count())
    }
}