1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
//! This module contains the implementation of the `cpuset` cgroup subsystem.
//!
//! See the Kernel's documentation for more information about this subsystem, found at:
//!  [Documentation/cgroup-v1/cpusets.txt](https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt)
use std::fs::File;
use std::io::{Read, Write};
use std::path::PathBuf;

use error::*;
use error::ErrorKind::*;

use {
    ControllIdentifier, ControllerInternal, Controllers, CpuResources, Resources, Subsystem,
};

/// A controller that allows controlling the `cpuset` subsystem of a Cgroup.
///
/// In essence, this controller is responsible for restricting the tasks in the control group to a
/// set of CPUs and/or memory nodes.
#[derive(Debug, Clone)]
pub struct CpuSetController {
    base: PathBuf,
    path: PathBuf,
}

/// The current state of the `cpuset` controller for this control group.
pub struct CpuSet {
    /// If true, no other control groups can share the CPUs listed in the `cpus` field.
    pub cpu_exclusive: bool,
    /// The list of CPUs the tasks of the control group can run on.
    ///
    /// This is a vector of `(start, end)` tuples, where each tuple is a range of CPUs where the
    /// control group is allowed to run on. Both sides of the range are inclusive.
    pub cpus: Vec<(u64, u64)>,
    /// The list of CPUs that the tasks can effectively run on. This removes the list of CPUs that
    /// the parent (and all of its parents) cannot run on from the `cpus` field of this control
    /// group.
    pub effective_cpus: Vec<(u64, u64)>,
    /// The list of memory nodes that the tasks can effectively use. This removes the list of nodes that
    /// the parent (and all of its parents) cannot use from the `mems` field of this control
    /// group.
    pub effective_mems: Vec<(u64, u64)>,
    /// If true, no other control groups can share the memory nodes listed in the `mems` field.
    pub mem_exclusive: bool,
    /// If true, the control group is 'hardwalled'. Kernel memory allocations (except for a few
    /// minor exceptions) are made from the memory nodes designated in the `mems` field.
    pub mem_hardwall: bool,
    /// If true, whenever `mems` is changed via `set_mems()`, the memory stored on the previous
    /// nodes are migrated to the new nodes selected by the new `mems`.
    pub memory_migrate: bool,
    /// Running average of the memory pressured faced by the tasks in the control group.
    pub memory_pressure: u64,
    /// This field is only at the root control group and controls whether the kernel will compute
    /// the memory pressure for control groups or not.
    pub memory_pressure_enabled: Option<bool>,
    /// If true, filesystem buffers are spread across evenly between the nodes specified in `mems`.
    pub memory_spread_page: bool,
    /// If true, kernel slab caches for file I/O are spread across evenly between the nodes
    /// specified in `mems`.
    pub memory_spread_slab: bool,
    /// The list of memory nodes the tasks of the control group can use.
    ///
    /// The format is the same as the `cpus`, `effective_cpus` and `effective_mems` fields.
    pub mems: Vec<(u64, u64)>,
    /// If true, the kernel will attempt to rebalance the load between the CPUs specified in the
    /// `cpus` field of this control group.
    pub sched_load_balance: bool,
    /// Represents how much work the kernel should do to rebalance this cpuset.
    ///
    /// | `sched_load_balance` | Effect |
    /// | -------------------- | ------ |
    /// |          -1          | Use the system default value |
    /// |           0          | Only balance loads periodically |
    /// |           1          | Immediately balance the load across tasks on the same core |
    /// |           2          | Immediately balance the load across cores in the same CPU package |
    /// |           4          | Immediately balance the load across CPUs on the same node |
    /// |           5          | Immediately balance the load between CPUs even if the system is NUMA |
    /// |           6          | Immediately balance the load between all CPUs |
    pub sched_relax_domain_level: u64,
}

impl ControllerInternal for CpuSetController {
    fn control_type(&self) -> Controllers {
        Controllers::CpuSet
    }
    fn get_path(&self) -> &PathBuf {
        &self.path
    }
    fn get_path_mut(&mut self) -> &mut PathBuf {
        &mut self.path
    }
    fn get_base(&self) -> &PathBuf {
        &self.base
    }

    fn apply(&self, res: &Resources) -> Result<()> {
        // get the resources that apply to this controller
        let res: &CpuResources = &res.cpu;

        if res.update_values {
            let _ = self.set_cpus(&res.cpus);
            let _ = self.set_mems(&res.mems);
        }

        Ok(())
    }
}

impl ControllIdentifier for CpuSetController {
    fn controller_type() -> Controllers {
        Controllers::CpuSet
    }
}

impl<'a> From<&'a Subsystem> for &'a CpuSetController {
    fn from(sub: &'a Subsystem) -> &'a CpuSetController {
        unsafe {
            match sub {
                Subsystem::CpuSet(c) => c,
                _ => {
                    assert_eq!(1, 0);
                    ::std::mem::uninitialized()
                }
            }
        }
    }
}

fn read_string_from(mut file: File) -> Result<String> {
    let mut string = String::new();
    match file.read_to_string(&mut string) {
        Ok(_) => Ok(string.trim().to_string()),
        Err(e) => Err(Error::with_cause(ReadFailed, e)),
    }
}

fn read_u64_from(mut file: File) -> Result<u64> {
    let mut string = String::new();
    match file.read_to_string(&mut string) {
        Ok(_) => string.trim().parse().map_err(|e| Error::with_cause(ParseError, e)),
        Err(e) => Err(Error::with_cause(ReadFailed, e)),
    }
}

/// Parse a string like "1,2,4-5,8" into a list of (start, end) tuples.
fn parse_range(s: String) -> Result<Vec<(u64, u64)>> {
    let mut fin = Vec::new();

    if s == "".to_string() {
        return Ok(fin);
    }

    // first split by commas
    let comma_split = s.split(",");

    for sp in comma_split {
        if sp.contains("-") {
            // this is a true range
            let dash_split = sp.split("-").collect::<Vec<_>>();
            if dash_split.len() != 2 {
                return Err(Error::new(ParseError));
            }
            let first = dash_split[0].parse::<u64>();
            let second = dash_split[1].parse::<u64>();
            if first.is_err() || second.is_err() {
                return Err(Error::new(ParseError));
            }
            fin.push((first.unwrap(), second.unwrap()));
        } else {
            // this is just a single number
            let num = sp.parse::<u64>();
            if num.is_err() {
                return Err(Error::new(ParseError));
            }
            fin.push((num.clone().unwrap(), num.clone().unwrap()));
        }
    }

    Ok(fin)
}

impl CpuSetController {
    /// Contructs a new `CpuSetController` with `oroot` serving as the root of the control group.
    pub fn new(oroot: PathBuf) -> Self {
        let mut root = oroot;
        root.push(Self::controller_type().to_string());
        Self {
            base: root.clone(),
            path: root,
        }
    }

    /// Returns the statistics gathered by the kernel for this control group. See the struct for
    /// more information on what information this entails.
    pub fn cpuset(&self) -> CpuSet {
        CpuSet {
            cpu_exclusive: {
                self.open_path("cpuset.cpu_exclusive", false)
                    .and_then(|file| read_u64_from(file))
                    .map(|x| x == 1)
                    .unwrap_or(false)
            },
            cpus: {
                self.open_path("cpuset.cpus", false)
                    .and_then(read_string_from)
                    .and_then(parse_range)
                    .unwrap_or(Vec::new())
            },
            effective_cpus: {
                self.open_path("cpuset.effective_cpus", false)
                    .and_then(read_string_from)
                    .and_then(parse_range)
                    .unwrap_or(Vec::new())
            },
            effective_mems: {
                self.open_path("cpuset.effective_mems", false)
                    .and_then(read_string_from)
                    .and_then(parse_range)
                    .unwrap_or(Vec::new())
            },
            mem_exclusive: {
                self.open_path("cpuset.mem_exclusive", false)
                    .and_then(read_u64_from)
                    .map(|x| x == 1)
                    .unwrap_or(false)
            },
            mem_hardwall: {
                self.open_path("cpuset.mem_hardwall", false)
                    .and_then(read_u64_from)
                    .map(|x| x == 1)
                    .unwrap_or(false)
            },
            memory_migrate: {
                self.open_path("cpuset.memory_migrate", false)
                    .and_then(read_u64_from)
                    .map(|x| x == 1)
                    .unwrap_or(false)
            },
            memory_pressure: {
                self.open_path("cpuset.memory_pressure", false)
                    .and_then(read_u64_from)
                    .unwrap_or(0)
            },
            memory_pressure_enabled: {
                self.open_path("cpuset.memory_pressure_enabled", false)
                    .and_then(read_u64_from)
                    .map(|x| x == 1)
                    .ok()
            },
            memory_spread_page: {
                self.open_path("cpuset.memory_spread_page", false)
                    .and_then(read_u64_from)
                    .map(|x| x == 1)
                    .unwrap_or(false)
            },
            memory_spread_slab: {
                self.open_path("cpuset.memory_spread_slab", false)
                    .and_then(read_u64_from)
                    .map(|x| x == 1)
                    .unwrap_or(false)
            },
            mems: {
                self.open_path("cpuset.mems", false)
                    .and_then(read_string_from)
                    .and_then(parse_range)
                    .unwrap_or(Vec::new())
            },
            sched_load_balance: {
                self.open_path("cpuset.sched_load_balance", false)
                    .and_then(read_u64_from)
                    .map(|x| x == 1)
                    .unwrap_or(false)
            },
            sched_relax_domain_level: {
                self.open_path("cpuset.sched_relax_domain_level", false)
                    .and_then(read_u64_from)
                    .unwrap_or(0)
            },
        }
    }

    /// Control whether the CPUs selected via `set_cpus()` should be exclusive to this control
    /// group or not.
    pub fn set_cpu_exclusive(&self, b: bool) -> Result<()> {
        self.open_path("cpuset.cpu_exclusive", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }

    /// Control whether the memory nodes selected via `set_memss()` should be exclusive to this control
    /// group or not.
    pub fn set_mem_exclusive(&self, b: bool) -> Result<()> {
        self.open_path("cpuset.mem_exclusive", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }

    /// Set the CPUs that the tasks in this control group can run on.
    ///
    /// Syntax is a comma separated list of CPUs, with an additional extension that ranges can
    /// be represented via dashes.
    pub fn set_cpus(&self, cpus: &str) -> Result<()> {
        self.open_path("cpuset.cpus", true).and_then(|mut file| {
            file.write_all(cpus.as_ref())
                .map_err(|e| Error::with_cause(WriteFailed, e))
        })
    }

    /// Set the memory nodes that the tasks in this control group can use.
    ///
    /// Syntax is the same as with `set_cpus()`.
    pub fn set_mems(&self, mems: &str) -> Result<()> {
        self.open_path("cpuset.mems", true).and_then(|mut file| {
            file.write_all(mems.as_ref())
                .map_err(|e| Error::with_cause(WriteFailed, e))
        })
    }

    /// Controls whether the control group should be "hardwalled", i.e., whether kernel allocations
    /// should exclusively use the memory nodes set via `set_mems()`.
    ///
    /// Note that some kernel allocations, most notably those that are made in interrupt handlers
    /// may disregard this.
    pub fn set_hardwall(&self, b: bool) -> Result<()> {
        self.open_path("cpuset.mem_hardwall", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }

    /// Controls whether the kernel should attempt to rebalance the load between the CPUs specified in the
    /// `cpus` field of this control group.
    pub fn set_load_balancing(&self, b: bool) -> Result<()> {
        self.open_path("cpuset.sched_load_balance", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }

    /// Contorl how much effort the kernel should invest in rebalacing the control group.
    ///
    /// See @CpuSet 's similar field for more information.
    pub fn set_rebalance_relax_domain_level(&self, i: i64) -> Result<()> {
        self.open_path("cpuset.sched_relax_domain_level", true)
            .and_then(|mut file| {
                file.write_all(i.to_string().as_ref())
                    .map_err(|e| Error::with_cause(WriteFailed, e))
            })
    }

    /// Control whether when using `set_mems()` the existing memory used by the tasks should be
    /// migrated over to the now-selected nodes.
    pub fn set_memory_migration(&self, b: bool) -> Result<()> {
        self.open_path("cpuset.memory_migrate", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }

    /// Control whether filesystem buffers should be evenly split across the nodes selected via
    /// `set_mems()`.
    pub fn set_memory_spread_page(&self, b: bool) -> Result<()> {
        self.open_path("cpuset.memory_spread_page", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }

    /// Control whether the kernel's slab cache for file I/O should be evenly split across the
    /// nodes selected via `set_mems()`.
    pub fn set_memory_spread_slab(&self, b: bool) -> Result<()> {
        self.open_path("cpuset.memory_spread_slab", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }

    /// Control whether the kernel should collect information to calculate memory pressure for
    /// control groups.
    ///
    /// Note: This will fail with `InvalidOperation` if the current congrol group is not the root
    /// control group.
    pub fn set_enable_memory_pressure(&self, b: bool) -> Result<()> {
        if !self.path_exists("cpuset.memory_pressure_enabled") {
            return Err(Error::new(InvalidOperation));
        }
        self.open_path("cpuset.memory_pressure_enabled", true)
            .and_then(|mut file| {
                if b {
                    file.write_all(b"1").map_err(|e| Error::with_cause(WriteFailed, e))
                } else {
                    file.write_all(b"0").map_err(|e| Error::with_cause(WriteFailed, e))
                }
            })
    }
}

#[cfg(test)]
mod tests {
    use cpuset;
    #[test]
    fn test_parse_range() {
        let test_cases = vec![
            "1,2,4-6,9".to_string(),
            "".to_string(),
            "1".to_string(),
            "1-111".to_string(),
            "1,2,3,4".to_string(),
            "1-5,6-7,8-9".to_string(),
        ];
        let expecteds = vec![
            vec![(1, 1), (2, 2), (4, 6), (9, 9)],
            vec![],
            vec![(1, 1)],
            vec![(1, 111)],
            vec![(1, 1), (2, 2), (3, 3), (4, 4)],
            vec![(1, 5), (6, 7), (8, 9)],
        ];

        for (i, case) in test_cases.into_iter().enumerate() {
            let range = cpuset::parse_range(case.clone());
            println!("{:?} => {:?}", case, range);
            assert!(range.is_ok());
            assert_eq!(range.unwrap(), expecteds[i]);
        }
    }
}