1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use std::ops::{Deref, DerefMut};
use std::cmp::Ordering;

use bit_matrix::BitMatrix;

use BinarizedCfg;
use ContextFree;
use ContextFreeRef;
use binarized::BinarizedRules;
use classification::useful::Usefulness;
use rule::RuleRef;
use rule::GrammarRule;
use rule::container::RuleContainer;
use remap::{Remap, Mapping};
use symbol::SymbolSource;
use super::history::History;
use Symbol;

type Dot = u32;

/// Drop-in replacement for `cfg::BinarizedCfg`.
#[derive(Clone, Default)]
pub struct BinarizedGrammar {
    pub(super) inherit: BinarizedCfg<History>,
    pub(super) start: Option<Symbol>,
    pub(super) has_wrapped_start: bool,
}

impl BinarizedGrammar {
    /// Creates a new `BinarizedGrammar`.
    pub fn new() -> Self {
        Self::default()
    }

    pub fn set_start(&mut self, start: Symbol) {
        self.start = Some(start);
    }

    pub fn start(&self) -> Symbol {
        self.start.unwrap()
    }
}

impl ContextFree for BinarizedGrammar
{
}

impl<'a> ContextFreeRef<'a> for &'a BinarizedGrammar {
    type RuleRef = RuleRef<'a, History>;
    type Rules = BinarizedRules<'a, History>;

    fn rules(self) -> Self::Rules {
        self.inherit.rules()
    }
}

impl RuleContainer for BinarizedGrammar {
    type History = History;

    fn sym_source(&self) -> &SymbolSource {
        self.inherit.sym_source()
    }

    fn sym_source_mut(&mut self) -> &mut SymbolSource {
        self.inherit.sym_source_mut()
    }

    fn retain<F>(&mut self, f: F)
        where F: FnMut(Symbol, &[Symbol], &History) -> bool
    {
        self.inherit.retain(f)
    }

    fn add_rule(&mut self, lhs: Symbol, rhs: &[Symbol], history: History) {
        self.inherit.add_rule(lhs, rhs, history);
    }
}

impl Deref for BinarizedGrammar {
    type Target = BinarizedCfg<History>;
    fn deref(&self) -> &Self::Target {
        &self.inherit
    }
}

impl DerefMut for BinarizedGrammar {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.inherit
    }
}

impl BinarizedGrammar {
    pub fn wrap_start(&mut self) {
        let start = self.start();
        let (new_start, eof) = self.sym();
        self.add_rule(new_start, &[start, eof], History::default());
        self.set_start(new_start);
        self.has_wrapped_start = true;
    }

    pub fn original_start(&self) -> Option<Symbol> {
        if !self.has_wrapped_start {
            return None;
        }
        let is_start_rule = |rule: &RuleRef<History>| rule.lhs() == self.start();
        let rhs0 = |rule: RuleRef<History>| rule.rhs().get(0).cloned();
        self.rules().find(is_start_rule).and_then(rhs0)
    }

    pub fn eof(&self) -> Option<Symbol> {
        if !self.has_wrapped_start {
            return None;
        }
        let is_start_rule = |rule: &RuleRef<History>| rule.lhs() == self.start();
        let rhs1 = |rule: RuleRef<History>| rule.rhs().get(1).cloned();
        self.rules().find(is_start_rule).and_then(rhs1)
    }

    pub fn dot_before_eof(&self) -> Option<Dot> {
        if !self.has_wrapped_start {
            return None;
        }
        let is_start_rule = |rule: RuleRef<History>| rule.lhs() == self.start();
        let as_dot = |pos| pos as Dot;
        self.rules().position(is_start_rule).map(as_dot)
    }

    pub fn make_proper(mut self: BinarizedGrammar) -> BinarizedGrammar {
        let start = self.start();
        {
            let mut usefulness = Usefulness::new(&mut *self).reachable([start]);
            if !usefulness.all_useful() {
                // for useless in usefulness.useless_rules() {
                //     let rhs: Vec<_> = useless.rule.rhs().iter().map(|t| tok.get(t.usize())).collect();
                //     println!("lhs:{:?} rhs:{:?} unreachable:{} unproductive:{}", tok.get(useless.rule.lhs().usize()), rhs, useless.unreachable, useless.unproductive);
                // }
                println!("warning: grammar has useless rules");
                usefulness.remove_useless_rules();
            }
        };
        self
    }

    pub fn eliminate_nulling(mut self: BinarizedGrammar) -> (BinarizedGrammar, BinarizedGrammar) {
        let nulling_grammar = BinarizedGrammar {
            inherit: self.eliminate_nulling_rules(),
            start: Some(self.start()),
            has_wrapped_start: self.has_wrapped_start,
        };
        (self, nulling_grammar)
    }

    pub fn remap_symbols(mut self: BinarizedGrammar) -> (BinarizedGrammar, Mapping) {
        let num_syms = self.sym_source().num_syms();
        // `order` describes relation `A < B`.
        let mut order = BitMatrix::new(num_syms, num_syms);
        for rule in self.rules() {
            if rule.rhs().len() == 1 {
                let left = rule.lhs().usize();
                let right = rule.rhs()[0].usize();
                match left.cmp(&right) {
                    Ordering::Less => {
                        order.set(left, right, true);
                    }
                    Ordering::Greater => {
                        order.set(right, left, true);
                    }
                    Ordering::Equal => {}
                }
            }
        }
        // the order above is not transitive.
        // We modify it so that if `A < B` and `B < C` then `A < C`
        order.transitive_closure();
        let mut maps = {
            let mut remap = Remap::new(&mut *self);
            remap.remove_unused_symbols();
            remap.reorder_symbols(|left, right| {
                let (left, right) = (left.usize(), right.usize());
                if order[(left, right)] {
                    Ordering::Less
                } else if order[(right, left)] {
                    Ordering::Greater
                } else {
                    Ordering::Equal
                }
            });
            remap.get_mapping()
        };
        let start = self.start();
        if let Some(internal_start) = maps.to_internal[start.usize()] {
            self.set_start(internal_start);
        } else {
            // The trivial grammar is a unique edge case -- the start symbol was removed.
            let internal_start = Symbol::from(maps.to_external.len());
            maps.to_internal[start.usize()] = Some(internal_start);
            maps.to_external.push(start);
            self.set_start(internal_start);
        }
        (self, maps)
    }

    pub fn is_empty(&self) -> bool {
      self.rules().all(|rule| Some(rule.lhs()) != self.start)
    }
}