1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// (C) Copyright 2016 Jethro G. Beekman
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Parsing C literals from byte slices.
//! 
//! This will parse a representation of a C literal into a Rust type.
//!
//! # characters
//! Character literals are stored into the `CChar` type, which can hold values
//! that are not valid Unicode code points. ASCII characters are represented as
//! `char`, literal bytes with the high byte set are converted into the raw
//! representation. Escape sequences are supported. If hex and octal escapes
//! map to an ASCII character, that is used, otherwise, the raw encoding is
//! used, including for values over 255. Unicode escapes are checked for
//! validity and mapped to `char`. Character sequences are not supported. Width
//! prefixes are ignored.
//!
//! # strings
//! Strings are interpreted as byte vectors. Escape sequences are supported. If
//! hex and octal escapes map onto multi-byte characters, they are truncated to
//! one 8-bit character. Unicode escapes are converted into their UTF-8
//! encoding. Width prefixes are ignored.
//!
//! # integers
//! Integers are read into `i64`. Binary, octal, decimal and hexadecimal are
//! all supported. If the literal value is between `i64::MAX` and `u64::MAX`,
//! it is bit-cast to `i64`. Values over `u64::MAX` cannot be parsed. Width and
//! sign suffixes are ignored. Sign prefixes are not supported.
//!
//! # real numbers
//! Reals are read into `f64`. Width suffixes are ignored. Sign prefixes are
//! not supported in the significand. Hexadecimal floating points are not
//! supported.

use std::char;
use std::str::{self,FromStr};

use nom_crate::*;

use expr::EvalResult;

#[derive(Debug,Copy,Clone,PartialEq,Eq)]
/// Representation of a C character
pub enum CChar {
	/// A character that can be represented as a `char`
	Char(char),
	/// Any other character (8-bit characters, unicode surrogates, etc.)
	Raw(u64),
}

impl From<u8> for CChar {
	fn from(i: u8) -> CChar {
		match i {
			0 ... 0x7f => CChar::Char(i as u8 as char),
			_ => CChar::Raw(i as u64),
		}
	}
}

// A non-allocating version of this would be nice...
impl Into<Vec<u8>> for CChar {
	fn into(self) -> Vec<u8> {
		match self {
			CChar::Char(c) => {
				let mut s=String::with_capacity(4);
				s.extend(&[c]);
				s.into_bytes()
			}
			CChar::Raw(i) => {
				let mut v=Vec::with_capacity(1);
				v.push(i as u8);
				v
			}
		}
	}
}

/// ensures the child parser consumes the whole input
#[macro_export]
macro_rules! full (
	($i: expr, $submac:ident!( $($args:tt)* )) => (
		{
			use ::nom_crate::lib::std::result::Result::*;
			let res =  $submac!($i, $($args)*);
			match res {
				Ok((i, o)) => if i.len() == 0 {
					Ok((i, o))
				} else {
					Err(::nom_crate::Err::Error(error_position!(i, ::nom_crate::ErrorKind::Custom(42))))
				},
				r => r,
			}
		}
	);
	($i:expr, $f:ident) => (
		full!($i, call!($f));
	);
);

// ====================================================
// ======== macros that shouldn't be necessary ========
// ====================================================

macro_rules! force_type (
	($input:expr,IResult<$i:ty,$o:ty,$e:ty>) => (Err::<($i,$o),Err<$i,$e>>(::nom_crate::Err::Error(error_position!($input, ErrorKind::Fix))))
);


// =================================
// ======== matching digits ========
// =================================

macro_rules! byte (
	($i:expr, $($p: pat)|* ) => ({
		match $i.split_first() {
			$(Some((&c @ $p,rest)))|* => Ok::<(&[_],u8),::nom_crate::Err<&[_],u32>>((rest,c)),
			Some(_) => Err(::nom_crate::Err::Error(error_position!($i, ErrorKind::OneOf))),
			None => Err(::nom_crate::Err::Incomplete(Needed::Size(1))),
		}
	})
);

named!(binary<u8>,byte!(b'0' ... b'1'));
named!(octal<u8>,byte!(b'0' ... b'7'));
named!(decimal<u8>,byte!(b'0' ... b'9'));
named!(hexadecimal<u8>,byte!(b'0' ... b'9' | b'a' ... b'f' | b'A' ... b'F'));


// ========================================
// ======== characters and strings ========
// ========================================

fn escape2char(c: char) -> CChar {
	CChar::Char(match c {
		'a' => '\x07',
		'b' => '\x08',
		'f' => '\x0c',
		'n' => '\n',
		'r' => '\r',
		't' => '\t',
		'v' => '\x0b',
		_ => unreachable!("invalid escape {}",c)
	})
}

fn c_raw_escape(n: Vec<u8>, radix: u32) -> Option<CChar> {
	str::from_utf8(&n).ok()
		.and_then(|i|u64::from_str_radix(i,radix).ok())
		.map(|i|match i {
			0 ... 0x7f => CChar::Char(i as u8 as char),
			_ => CChar::Raw(i),
		})
}

fn c_unicode_escape(n: Vec<u8>) -> Option<CChar> {
	str::from_utf8(&n).ok()
		.and_then(|i|u32::from_str_radix(i,16).ok())
		.and_then(char::from_u32)
		.map(CChar::Char)
}

named!(escaped_char<CChar>,
	preceded!(complete!(char!('\\')),alt_complete!(
		map!(one_of!(r#"'"?\"#),CChar::Char) |
		map!(one_of!("abfnrtv"),escape2char) |
		map_opt!(many_m_n!(1,3,octal),|v|c_raw_escape(v,8)) |
		map_opt!(preceded!(char!('x'),many1!(hexadecimal)),|v|c_raw_escape(v,16)) |
		map_opt!(preceded!(char!('u'),many_m_n!(4,4,hexadecimal)),c_unicode_escape) |
		map_opt!(preceded!(char!('U'),many_m_n!(8,8,hexadecimal)),c_unicode_escape)
	))
);

named!(c_width_prefix,
	alt!(
		tag!("u8") |
		tag!("u") |
		tag!("U") |
		tag!("L")
	)
);

named!(c_char<CChar>,
	delimited!(
		terminated!(opt!(c_width_prefix),char!('\'')),
		alt!( escaped_char | map!(byte!(0 ... 91 /* \=92 */ | 93 ... 255),CChar::from) ),
		char!('\'')
	)
);

named!(c_string<Vec<u8> >,
	delimited!(
		alt!( preceded!(c_width_prefix,char!('"')) | char!('"') ),
		fold_many0!(
			alt!(map!(escaped_char, |c:CChar| c.into()) | map!(is_not!([b'\\', b'"']), |c: &[u8]| c.into())),
			Vec::new(),
			|mut v: Vec<u8>, res:Vec<u8>| { v.extend_from_slice(&res); v }
		),
		char!('"')
	)
);

// ================================
// ======== parse integers ========
// ================================

fn c_int_radix(n: Vec<u8>, radix: u32) -> Option<u64> {
	str::from_utf8(&n).ok()
		.and_then(|i|u64::from_str_radix(i,radix).ok())
}

fn take_ul(input: &[u8]) -> IResult<&[u8], &[u8]> {
	use ::nom_crate::InputTakeAtPosition;

	let r = input.split_at_position(|c| c != b'u' && c != b'U' && c != b'l' && c != b'L');
	match r {
		Err(Err::Incomplete(_)) => Ok((&input[input.len()..], input)),
		res => res,
	}
}

named!(c_int<i64>,
	map!(terminated!(alt_complete!(
		map_opt!(preceded!(tag!("0x"),many1!(complete!(hexadecimal))),|v|c_int_radix(v,16)) |
		map_opt!(preceded!(tag!("0X"),many1!(complete!(hexadecimal))),|v|c_int_radix(v,16)) |
		map_opt!(preceded!(tag!("0b"),many1!(complete!(binary))),|v|c_int_radix(v,2)) |
		map_opt!(preceded!(tag!("0B"),many1!(complete!(binary))),|v|c_int_radix(v,2)) |
		map_opt!(preceded!(char!('0'),many1!(complete!(octal))),|v|c_int_radix(v,8)) |
		map_opt!(many1!(complete!(decimal)),|v|c_int_radix(v,10)) |
		force_type!(IResult<_,_,u32>)
	),opt!(take_ul)),|i|i as i64)
);

// ==============================
// ======== parse floats ========
// ==============================

named!(float_width<u8>,complete!(byte!(b'f' | b'l' | b'F' | b'L')));
named!(float_exp<(Option<u8>,Vec<u8>)>,preceded!(byte!(b'e'|b'E'),pair!(opt!(byte!(b'-'|b'+')),many1!(complete!(decimal)))));

named!(c_float<f64>,
	map_opt!(alt!(
		terminated!(recognize!(tuple!(many1!(complete!(decimal)),byte!(b'.'),many0!(complete!(decimal)))),opt!(float_width)) |
		terminated!(recognize!(tuple!(many0!(complete!(decimal)),byte!(b'.'),many1!(complete!(decimal)))),opt!(float_width)) |
		terminated!(recognize!(tuple!(many0!(complete!(decimal)),opt!(byte!(b'.')),many1!(complete!(decimal)),float_exp)),opt!(float_width)) |
		terminated!(recognize!(tuple!(many1!(complete!(decimal)),opt!(byte!(b'.')),many0!(complete!(decimal)),float_exp)),opt!(float_width)) |
		terminated!(recognize!(many1!(complete!(decimal))),float_width)
	),|v|str::from_utf8(v).ok().and_then(|i|f64::from_str(i).ok()))
);

// ================================
// ======== main interface ========
// ================================

named!(one_literal<&[u8],EvalResult,::Error>,
	fix_error!(::Error,alt_complete!(
		map!(full!(c_char),EvalResult::Char) |
		map!(full!(c_int),|i|EvalResult::Int(::std::num::Wrapping(i))) |
		map!(full!(c_float),EvalResult::Float) |
		map!(full!(c_string),EvalResult::Str)
	))
);

/// Parse a C literal.
///
/// The input must contain exactly the representation of a single literal
/// token, and in particular no whitespace or sign prefixes.
pub fn parse(input: &[u8]) -> IResult<&[u8],EvalResult,::Error> {
	::assert_full_parse(one_literal(input))
}