Expand description
cdt
is a library for calculating
Delaunay and
constrained Delaunay
triangulations.
It is optimized for correctness and speed, using exact predicates to perform point-in-circle and orientation tests.
§Examples
§Delaunay triangulation
This triangulates a set of four points in a square
let pts = vec![(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)];
let triangles = cdt::triangulate_points(&pts).unwrap();
assert!(triangles.len() == 2);
for t in triangles {
println!("{:?} {:?} {:?}", pts[t.0], pts[t.1], pts[t.2])
}
§Constrained Delaunay triangulation
This triangulates an inner and outer square
let pts = vec![(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0),
(0.2, 0.2), (0.8, 0.2), (0.8, 0.8), (0.2, 0.8)];
let triangles = cdt::triangulate_contours(&pts,
&[vec![0, 1, 2, 3, 0], vec![4, 5, 6, 7, 4]])
.unwrap();
for t in triangles {
println!("{:?} {:?} {:?}", pts[t.0], pts[t.1], pts[t.2])
}
§Crate features
By default, the library uses u32
indexes for internal data structures,
to improve performance. If you are planning to triangulate more than 500M
points in a single pass, you should enable the long-indexes
feature.
Structs§
- This
struct
contains all of the data needed to generate a (constrained) Delaunay triangulation of a set of input points and edges. It is a low-level API; consider using the module-level functions if you don’t need total control.
Enums§
- Single error type for this library
Functions§
- Given a set of points and edges which are known to panic, figures out the max number of save steps, then saves an SVG right before the panic occurs
- Triangulates a set of contours, given as indexed paths into the point list. Each contour must be closed (i.e. the last point in the contour must equal the first point), otherwise
Error::OpenContour
will be returned. - Triangulates a set of points, returning triangles as triples of indexes into the original points list. The resulting triangulation has a convex hull.
- Triangulates a set of points with certain fixed edges. The edges are assumed to form closed boundaries; only triangles within those boundaries will be returned.