1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#[doc = "Reader of register CS0_CSIL"]
pub type R = crate::R<u32, super::CS0_CSIL>;
#[doc = "Writer for register CS0_CSIL"]
pub type W = crate::W<u32, super::CS0_CSIL>;
#[doc = "Register CS0_CSIL `reset()`'s with value 0"]
impl crate::ResetValue for super::CS0_CSIL {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0
    }
}
#[doc = "Reader of field `Reserved32`"]
pub type RESERVED32_R = crate::R<u32, u32>;
#[doc = "Write proxy for field `Reserved32`"]
pub struct RESERVED32_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED32_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x00ff_ffff << 8)) | (((value as u32) & 0x00ff_ffff) << 8);
        self.w
    }
}
#[doc = "Reader of field `CLRSETUPEND_or_Reserved8`"]
pub type CLRSETUPEND_OR_RESERVED8_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `CLRSETUPEND_or_Reserved8`"]
pub struct CLRSETUPEND_OR_RESERVED8_W<'a> {
    w: &'a mut W,
}
impl<'a> CLRSETUPEND_OR_RESERVED8_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 7)) | (((value as u32) & 0x01) << 7);
        self.w
    }
}
#[doc = "Reader of field `CLROUTPKTRDY_or_CLRDATATOG`"]
pub type CLROUTPKTRDY_OR_CLRDATATOG_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `CLROUTPKTRDY_or_CLRDATATOG`"]
pub struct CLROUTPKTRDY_OR_CLRDATATOG_W<'a> {
    w: &'a mut W,
}
impl<'a> CLROUTPKTRDY_OR_CLRDATATOG_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 6)) | (((value as u32) & 0x01) << 6);
        self.w
    }
}
#[doc = "Reader of field `SENDSTALL_or_SENTSTALL`"]
pub type SENDSTALL_OR_SENTSTALL_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SENDSTALL_or_SENTSTALL`"]
pub struct SENDSTALL_OR_SENTSTALL_W<'a> {
    w: &'a mut W,
}
impl<'a> SENDSTALL_OR_SENTSTALL_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 5)) | (((value as u32) & 0x01) << 5);
        self.w
    }
}
#[doc = "Reader of field `SETUPEND_or_SENDSTALL`"]
pub type SETUPEND_OR_SENDSTALL_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SETUPEND_or_SENDSTALL`"]
pub struct SETUPEND_OR_SENDSTALL_W<'a> {
    w: &'a mut W,
}
impl<'a> SETUPEND_OR_SENDSTALL_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | (((value as u32) & 0x01) << 4);
        self.w
    }
}
#[doc = "Reader of field `DATAEND_or_FLUSHPACKET`"]
pub type DATAEND_OR_FLUSHPACKET_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `DATAEND_or_FLUSHPACKET`"]
pub struct DATAEND_OR_FLUSHPACKET_W<'a> {
    w: &'a mut W,
}
impl<'a> DATAEND_OR_FLUSHPACKET_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | (((value as u32) & 0x01) << 3);
        self.w
    }
}
#[doc = "Reader of field `SENTSTALL_or_UNDERRUN`"]
pub type SENTSTALL_OR_UNDERRUN_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SENTSTALL_or_UNDERRUN`"]
pub struct SENTSTALL_OR_UNDERRUN_W<'a> {
    w: &'a mut W,
}
impl<'a> SENTSTALL_OR_UNDERRUN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 2)) | (((value as u32) & 0x01) << 2);
        self.w
    }
}
#[doc = "Reader of field `INPKTRDY_or_PKTPRESENT`"]
pub type INPKTRDY_OR_PKTPRESENT_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `INPKTRDY_or_PKTPRESENT`"]
pub struct INPKTRDY_OR_PKTPRESENT_W<'a> {
    w: &'a mut W,
}
impl<'a> INPKTRDY_OR_PKTPRESENT_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | (((value as u32) & 0x01) << 1);
        self.w
    }
}
#[doc = "Reader of field `OUTPKTRDY_or_INPKTRDY`"]
pub type OUTPKTRDY_OR_INPKTRDY_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `OUTPKTRDY_or_INPKTRDY`"]
pub struct OUTPKTRDY_OR_INPKTRDY_W<'a> {
    w: &'a mut W,
}
impl<'a> OUTPKTRDY_OR_INPKTRDY_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | ((value as u32) & 0x01);
        self.w
    }
}
impl R {
    #[doc = "Bits 8:31 - 31:8\\] Reserved"]
    #[inline(always)]
    pub fn reserved32(&self) -> RESERVED32_R {
        RESERVED32_R::new(((self.bits >> 8) & 0x00ff_ffff) as u32)
    }
    #[doc = "Bit 7 - 7:7\\] USB_CS0.CLRSETUPEND \\[RW\\]: Software sets this bit to clear the USB_CS0.SETUPEND bit. It is cleared automatically. USB_CSIL.Reserved \\[RO\\]: Reserved"]
    #[inline(always)]
    pub fn clrsetupend_or_reserved8(&self) -> CLRSETUPEND_OR_RESERVED8_R {
        CLRSETUPEND_OR_RESERVED8_R::new(((self.bits >> 7) & 0x01) != 0)
    }
    #[doc = "Bit 6 - 6:6\\] USB_CS0.CLROUTPKTRDY \\[RW\\]: Software sets this bit to clear the USB_CS0.OUTPKTRDY bit. It is cleared automatically. USB_CSIL.CLRDATATOG \\[RW\\]: Software sets this bit to reset the IN endpoint data toggle to 0."]
    #[inline(always)]
    pub fn clroutpktrdy_or_clrdatatog(&self) -> CLROUTPKTRDY_OR_CLRDATATOG_R {
        CLROUTPKTRDY_OR_CLRDATATOG_R::new(((self.bits >> 6) & 0x01) != 0)
    }
    #[doc = "Bit 5 - 5:5\\] USB_CS0.SENDSTALL \\[RW\\]: Software sets this bit to terminate the current transaction with a STALL handshake. The bit is cleared automatically when the STALL handshake has been transmitted. USB_CSIL.SENTSTALL \\[RW\\]: For bulk/interrupt mode IN endpoints: This bit is set when a STALL handshake is transmitted. The FIFO is flushed and the USB_CSIL.INPKTRDY bit cleared. Software should clear this bit."]
    #[inline(always)]
    pub fn sendstall_or_sentstall(&self) -> SENDSTALL_OR_SENTSTALL_R {
        SENDSTALL_OR_SENTSTALL_R::new(((self.bits >> 5) & 0x01) != 0)
    }
    #[doc = "Bit 4 - 4:4\\] USB_CS0.SETUPEND \\[RO\\]: This bit is set when a control transaction ends before the USB_CS0.DATAEND bit has been set. An interrupt is generated and the FIFO flushed at this time. Software clears this bit by setting USB_CS0.CLRSETUPEND. CSIL.SENDSTALL \\[RW\\]: For bulk/interrupt mode IN endpoints: Software sets this bit to issue a STALL handshake. Software clears this bit to terminate the stall condition."]
    #[inline(always)]
    pub fn setupend_or_sendstall(&self) -> SETUPEND_OR_SENDSTALL_R {
        SETUPEND_OR_SENDSTALL_R::new(((self.bits >> 4) & 0x01) != 0)
    }
    #[doc = "Bit 3 - 3:3\\] USB_CS0.DATAEND \\[RW\\]: This bit is used to signal the end of the data stage, and must be set: 1. When the last data packet is loaded and USB_CS0.INPKTRDY is set. 2. When the last data packet is unloaded and USB_CS0.CLROUTPKTRDY is set. 3. When USB_CS0.INPKTRDY is set to send a zero-length packet. The USB controller clears this bit automatically. USB_CSIL.FLUSHPACKET \\[RW\\]: Software sets this bit to flush the next packet to be transmitted from the IN endpoint FIFO. The FIFO pointer is reset and the USB_CSIL.INPKTRDY bit is cleared. Note: If the FIFO contains two packets, USB_CSIL.FLUSHPACKET will need to be set twice to completely clear the FIFO."]
    #[inline(always)]
    pub fn dataend_or_flushpacket(&self) -> DATAEND_OR_FLUSHPACKET_R {
        DATAEND_OR_FLUSHPACKET_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bit 2 - 2:2\\] USB_CS0.SENTSTALL \\[RW\\]: This bit is set when a STALL handshake is sent. An interrupt is generated is generated when this bit is set. Software must clear this bit. USB_CSIL.UNDERRUN \\[RW\\]: In isochronous mode, this bit is set when a zero length data packet is sent after receiving an IN token with USB_CSIL.INPKTRDY not set. In bulk/interrupt mode, this bit is set when a NAK is returned in response to an IN token. Software should clear this bit."]
    #[inline(always)]
    pub fn sentstall_or_underrun(&self) -> SENTSTALL_OR_UNDERRUN_R {
        SENTSTALL_OR_UNDERRUN_R::new(((self.bits >> 2) & 0x01) != 0)
    }
    #[doc = "Bit 1 - 1:1\\] USB_CS0. INPKTRDY \\[RW\\]: Software sets this bit after loading a data packet into the endpoint 0 FIFO. It is cleared automatically when the data packet has been transmitted. An interrupt is generated when the bit is cleared. USB_CSIL.PKTPRESENT \\[RO\\]: This bit is set when there is at least one packet in the IN endpoint FIFO."]
    #[inline(always)]
    pub fn inpktrdy_or_pktpresent(&self) -> INPKTRDY_OR_PKTPRESENT_R {
        INPKTRDY_OR_PKTPRESENT_R::new(((self.bits >> 1) & 0x01) != 0)
    }
    #[doc = "Bit 0 - 0:0\\] USB_CS0.OUTPKTRDY \\[RO\\]: Endpoint 0 data packet received An interrupt request (EP0) is generated if the interrupt is enabled. Software must read the endpoint 0 FIFO empty, and clear this bit by setting USB_CS0.CLROUTPKTRDY USB_CSIL.INPKTRDY \\[RW\\]: IN endpoint {1-5} packet transfer pending Software sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is generated (if enabled) when the bit is cleared. When using double-buffering, the bit is cleared immediately if the other FIFO is empty."]
    #[inline(always)]
    pub fn outpktrdy_or_inpktrdy(&self) -> OUTPKTRDY_OR_INPKTRDY_R {
        OUTPKTRDY_OR_INPKTRDY_R::new((self.bits & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 8:31 - 31:8\\] Reserved"]
    #[inline(always)]
    pub fn reserved32(&mut self) -> RESERVED32_W {
        RESERVED32_W { w: self }
    }
    #[doc = "Bit 7 - 7:7\\] USB_CS0.CLRSETUPEND \\[RW\\]: Software sets this bit to clear the USB_CS0.SETUPEND bit. It is cleared automatically. USB_CSIL.Reserved \\[RO\\]: Reserved"]
    #[inline(always)]
    pub fn clrsetupend_or_reserved8(&mut self) -> CLRSETUPEND_OR_RESERVED8_W {
        CLRSETUPEND_OR_RESERVED8_W { w: self }
    }
    #[doc = "Bit 6 - 6:6\\] USB_CS0.CLROUTPKTRDY \\[RW\\]: Software sets this bit to clear the USB_CS0.OUTPKTRDY bit. It is cleared automatically. USB_CSIL.CLRDATATOG \\[RW\\]: Software sets this bit to reset the IN endpoint data toggle to 0."]
    #[inline(always)]
    pub fn clroutpktrdy_or_clrdatatog(&mut self) -> CLROUTPKTRDY_OR_CLRDATATOG_W {
        CLROUTPKTRDY_OR_CLRDATATOG_W { w: self }
    }
    #[doc = "Bit 5 - 5:5\\] USB_CS0.SENDSTALL \\[RW\\]: Software sets this bit to terminate the current transaction with a STALL handshake. The bit is cleared automatically when the STALL handshake has been transmitted. USB_CSIL.SENTSTALL \\[RW\\]: For bulk/interrupt mode IN endpoints: This bit is set when a STALL handshake is transmitted. The FIFO is flushed and the USB_CSIL.INPKTRDY bit cleared. Software should clear this bit."]
    #[inline(always)]
    pub fn sendstall_or_sentstall(&mut self) -> SENDSTALL_OR_SENTSTALL_W {
        SENDSTALL_OR_SENTSTALL_W { w: self }
    }
    #[doc = "Bit 4 - 4:4\\] USB_CS0.SETUPEND \\[RO\\]: This bit is set when a control transaction ends before the USB_CS0.DATAEND bit has been set. An interrupt is generated and the FIFO flushed at this time. Software clears this bit by setting USB_CS0.CLRSETUPEND. CSIL.SENDSTALL \\[RW\\]: For bulk/interrupt mode IN endpoints: Software sets this bit to issue a STALL handshake. Software clears this bit to terminate the stall condition."]
    #[inline(always)]
    pub fn setupend_or_sendstall(&mut self) -> SETUPEND_OR_SENDSTALL_W {
        SETUPEND_OR_SENDSTALL_W { w: self }
    }
    #[doc = "Bit 3 - 3:3\\] USB_CS0.DATAEND \\[RW\\]: This bit is used to signal the end of the data stage, and must be set: 1. When the last data packet is loaded and USB_CS0.INPKTRDY is set. 2. When the last data packet is unloaded and USB_CS0.CLROUTPKTRDY is set. 3. When USB_CS0.INPKTRDY is set to send a zero-length packet. The USB controller clears this bit automatically. USB_CSIL.FLUSHPACKET \\[RW\\]: Software sets this bit to flush the next packet to be transmitted from the IN endpoint FIFO. The FIFO pointer is reset and the USB_CSIL.INPKTRDY bit is cleared. Note: If the FIFO contains two packets, USB_CSIL.FLUSHPACKET will need to be set twice to completely clear the FIFO."]
    #[inline(always)]
    pub fn dataend_or_flushpacket(&mut self) -> DATAEND_OR_FLUSHPACKET_W {
        DATAEND_OR_FLUSHPACKET_W { w: self }
    }
    #[doc = "Bit 2 - 2:2\\] USB_CS0.SENTSTALL \\[RW\\]: This bit is set when a STALL handshake is sent. An interrupt is generated is generated when this bit is set. Software must clear this bit. USB_CSIL.UNDERRUN \\[RW\\]: In isochronous mode, this bit is set when a zero length data packet is sent after receiving an IN token with USB_CSIL.INPKTRDY not set. In bulk/interrupt mode, this bit is set when a NAK is returned in response to an IN token. Software should clear this bit."]
    #[inline(always)]
    pub fn sentstall_or_underrun(&mut self) -> SENTSTALL_OR_UNDERRUN_W {
        SENTSTALL_OR_UNDERRUN_W { w: self }
    }
    #[doc = "Bit 1 - 1:1\\] USB_CS0. INPKTRDY \\[RW\\]: Software sets this bit after loading a data packet into the endpoint 0 FIFO. It is cleared automatically when the data packet has been transmitted. An interrupt is generated when the bit is cleared. USB_CSIL.PKTPRESENT \\[RO\\]: This bit is set when there is at least one packet in the IN endpoint FIFO."]
    #[inline(always)]
    pub fn inpktrdy_or_pktpresent(&mut self) -> INPKTRDY_OR_PKTPRESENT_W {
        INPKTRDY_OR_PKTPRESENT_W { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] USB_CS0.OUTPKTRDY \\[RO\\]: Endpoint 0 data packet received An interrupt request (EP0) is generated if the interrupt is enabled. Software must read the endpoint 0 FIFO empty, and clear this bit by setting USB_CS0.CLROUTPKTRDY USB_CSIL.INPKTRDY \\[RW\\]: IN endpoint {1-5} packet transfer pending Software sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is generated (if enabled) when the bit is cleared. When using double-buffering, the bit is cleared immediately if the other FIFO is empty."]
    #[inline(always)]
    pub fn outpktrdy_or_inpktrdy(&mut self) -> OUTPKTRDY_OR_INPKTRDY_W {
        OUTPKTRDY_OR_INPKTRDY_W { w: self }
    }
}