1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#[doc = "Reader of register FR"]
pub type R = crate::R<u32, super::FR>;
#[doc = "Writer for register FR"]
pub type W = crate::W<u32, super::FR>;
#[doc = "Register FR `reset()`'s with value 0"]
impl crate::ResetValue for super::FR {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0
    }
}
#[doc = "Reader of field `Reserved24`"]
pub type RESERVED24_R = crate::R<u32, u32>;
#[doc = "Write proxy for field `Reserved24`"]
pub struct RESERVED24_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED24_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x00ff_ffff << 8)) | (((value as u32) & 0x00ff_ffff) << 8);
        self.w
    }
}
#[doc = "Reader of field `TXFE`"]
pub type TXFE_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `TXFE`"]
pub struct TXFE_W<'a> {
    w: &'a mut W,
}
impl<'a> TXFE_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 7)) | (((value as u32) & 0x01) << 7);
        self.w
    }
}
#[doc = "Reader of field `RXFF`"]
pub type RXFF_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `RXFF`"]
pub struct RXFF_W<'a> {
    w: &'a mut W,
}
impl<'a> RXFF_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 6)) | (((value as u32) & 0x01) << 6);
        self.w
    }
}
#[doc = "Reader of field `TXFF`"]
pub type TXFF_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `TXFF`"]
pub struct TXFF_W<'a> {
    w: &'a mut W,
}
impl<'a> TXFF_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 5)) | (((value as u32) & 0x01) << 5);
        self.w
    }
}
#[doc = "Reader of field `RXFE`"]
pub type RXFE_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `RXFE`"]
pub struct RXFE_W<'a> {
    w: &'a mut W,
}
impl<'a> RXFE_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 4)) | (((value as u32) & 0x01) << 4);
        self.w
    }
}
#[doc = "Reader of field `BUSY`"]
pub type BUSY_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `BUSY`"]
pub struct BUSY_W<'a> {
    w: &'a mut W,
}
impl<'a> BUSY_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | (((value as u32) & 0x01) << 3);
        self.w
    }
}
#[doc = "Reader of field `Reserved2`"]
pub type RESERVED2_R = crate::R<u8, u8>;
#[doc = "Write proxy for field `Reserved2`"]
pub struct RESERVED2_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED2_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x03 << 1)) | (((value as u32) & 0x03) << 1);
        self.w
    }
}
#[doc = "Reader of field `CTS`"]
pub type CTS_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `CTS`"]
pub struct CTS_W<'a> {
    w: &'a mut W,
}
impl<'a> CTS_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | ((value as u32) & 0x01);
        self.w
    }
}
impl R {
    #[doc = "Bits 8:31 - 31:8\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved24(&self) -> RESERVED24_R {
        RESERVED24_R::new(((self.bits >> 8) & 0x00ff_ffff) as u32)
    }
    #[doc = "Bit 7 - 7:7\\] UART transmit FIFO empty The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the transmit holding register is empty. If the FIFO is enabled (FEN is 1), the transmit FIFO is empty. 0: The transmitter has data to transmit."]
    #[inline(always)]
    pub fn txfe(&self) -> TXFE_R {
        TXFE_R::new(((self.bits >> 7) & 0x01) != 0)
    }
    #[doc = "Bit 6 - 6:6\\] UART receive FIFO full The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the receive holding register is full. If the FIFO is enabled (FEN is 1), the receive FIFO is full. 0: The receiver can receive data."]
    #[inline(always)]
    pub fn rxff(&self) -> RXFF_R {
        RXFF_R::new(((self.bits >> 6) & 0x01) != 0)
    }
    #[doc = "Bit 5 - 5:5\\] UART transmit FIFO full The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the transmit holding register is full. If the FIFO is enabled (FEN is 1), the transmit FIFO is full. 0: The transmitter is not full."]
    #[inline(always)]
    pub fn txff(&self) -> TXFF_R {
        TXFF_R::new(((self.bits >> 5) & 0x01) != 0)
    }
    #[doc = "Bit 4 - 4:4\\] UART receive FIFO empty The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the receive holding register is empty. If the FIFO is enabled (FEN is 1), the receive FIFO is empty. 0: The receiver is not empty."]
    #[inline(always)]
    pub fn rxfe(&self) -> RXFE_R {
        RXFE_R::new(((self.bits >> 4) & 0x01) != 0)
    }
    #[doc = "Bit 3 - 3:3\\] UART busy 1: The UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register. 0: The UART is not busy. This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled)."]
    #[inline(always)]
    pub fn busy(&self) -> BUSY_R {
        BUSY_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bits 1:2 - 2:1\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved2(&self) -> RESERVED2_R {
        RESERVED2_R::new(((self.bits >> 1) & 0x03) as u8)
    }
    #[doc = "Bit 0 - 0:0\\] Clear to send (UART1 only, reserved for UART0). 1: The U1CTS signal is asserted. 0: The U1CTS signal is not asserted."]
    #[inline(always)]
    pub fn cts(&self) -> CTS_R {
        CTS_R::new((self.bits & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 8:31 - 31:8\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved24(&mut self) -> RESERVED24_W {
        RESERVED24_W { w: self }
    }
    #[doc = "Bit 7 - 7:7\\] UART transmit FIFO empty The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the transmit holding register is empty. If the FIFO is enabled (FEN is 1), the transmit FIFO is empty. 0: The transmitter has data to transmit."]
    #[inline(always)]
    pub fn txfe(&mut self) -> TXFE_W {
        TXFE_W { w: self }
    }
    #[doc = "Bit 6 - 6:6\\] UART receive FIFO full The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the receive holding register is full. If the FIFO is enabled (FEN is 1), the receive FIFO is full. 0: The receiver can receive data."]
    #[inline(always)]
    pub fn rxff(&mut self) -> RXFF_W {
        RXFF_W { w: self }
    }
    #[doc = "Bit 5 - 5:5\\] UART transmit FIFO full The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the transmit holding register is full. If the FIFO is enabled (FEN is 1), the transmit FIFO is full. 0: The transmitter is not full."]
    #[inline(always)]
    pub fn txff(&mut self) -> TXFF_W {
        TXFF_W { w: self }
    }
    #[doc = "Bit 4 - 4:4\\] UART receive FIFO empty The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. 1: If the FIFO is disabled (FEN is 0), the receive holding register is empty. If the FIFO is enabled (FEN is 1), the receive FIFO is empty. 0: The receiver is not empty."]
    #[inline(always)]
    pub fn rxfe(&mut self) -> RXFE_W {
        RXFE_W { w: self }
    }
    #[doc = "Bit 3 - 3:3\\] UART busy 1: The UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register. 0: The UART is not busy. This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled)."]
    #[inline(always)]
    pub fn busy(&mut self) -> BUSY_W {
        BUSY_W { w: self }
    }
    #[doc = "Bits 1:2 - 2:1\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved2(&mut self) -> RESERVED2_W {
        RESERVED2_W { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] Clear to send (UART1 only, reserved for UART0). 1: The U1CTS signal is asserted. 0: The U1CTS signal is not asserted."]
    #[inline(always)]
    pub fn cts(&mut self) -> CTS_W {
        CTS_W { w: self }
    }
}