1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#[doc = "Reader of register PWRDBG"]
pub type R = crate::R<u32, super::PWRDBG>;
#[doc = "Writer for register PWRDBG"]
pub type W = crate::W<u32, super::PWRDBG>;
#[doc = "Register PWRDBG `reset()`'s with value 0"]
impl crate::ResetValue for super::PWRDBG {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0
    }
}
#[doc = "Reader of field `Reserved32`"]
pub type RESERVED32_R = crate::R<u32, u32>;
#[doc = "Write proxy for field `Reserved32`"]
pub struct RESERVED32_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED32_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x0fff_ffff << 4)) | (((value as u32) & 0x0fff_ffff) << 4);
        self.w
    }
}
#[doc = "Reader of field `FORCE_WARM_RESET`"]
pub type FORCE_WARM_RESET_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `FORCE_WARM_RESET`"]
pub struct FORCE_WARM_RESET_W<'a> {
    w: &'a mut W,
}
impl<'a> FORCE_WARM_RESET_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | (((value as u32) & 0x01) << 3);
        self.w
    }
}
#[doc = "Reader of field `Reserved2`"]
pub type RESERVED2_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `Reserved2`"]
pub struct RESERVED2_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED2_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 2)) | (((value as u32) & 0x01) << 2);
        self.w
    }
}
#[doc = "Reader of field `Reserved1`"]
pub type RESERVED1_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `Reserved1`"]
pub struct RESERVED1_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED1_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | (((value as u32) & 0x01) << 1);
        self.w
    }
}
impl R {
    #[doc = "Bits 4:31 - 31:4\\] This register is 8 bits in a 32-bit address space."]
    #[inline(always)]
    pub fn reserved32(&self) -> RESERVED32_R {
        RESERVED32_R::new(((self.bits >> 4) & 0x0fff_ffff) as u32)
    }
    #[doc = "Bit 3 - 3:3\\] 0: No action 1: When written high, the chip is reset in the same manner as a CLD event and is readable from the RST field in the CLOCK_STA register."]
    #[inline(always)]
    pub fn force_warm_reset(&self) -> FORCE_WARM_RESET_R {
        FORCE_WARM_RESET_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bit 2 - 2:2\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved2(&self) -> RESERVED2_R {
        RESERVED2_R::new(((self.bits >> 2) & 0x01) != 0)
    }
    #[doc = "Bit 1 - 1:1\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved1(&self) -> RESERVED1_R {
        RESERVED1_R::new(((self.bits >> 1) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 4:31 - 31:4\\] This register is 8 bits in a 32-bit address space."]
    #[inline(always)]
    pub fn reserved32(&mut self) -> RESERVED32_W {
        RESERVED32_W { w: self }
    }
    #[doc = "Bit 3 - 3:3\\] 0: No action 1: When written high, the chip is reset in the same manner as a CLD event and is readable from the RST field in the CLOCK_STA register."]
    #[inline(always)]
    pub fn force_warm_reset(&mut self) -> FORCE_WARM_RESET_W {
        FORCE_WARM_RESET_W { w: self }
    }
    #[doc = "Bit 2 - 2:2\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved2(&mut self) -> RESERVED2_W {
        RESERVED2_W { w: self }
    }
    #[doc = "Bit 1 - 1:1\\] Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation."]
    #[inline(always)]
    pub fn reserved1(&mut self) -> RESERVED1_W {
        RESERVED1_W { w: self }
    }
}