1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#[doc = "Reader of register CR1"]
pub type R = crate::R<u32, super::CR1>;
#[doc = "Writer for register CR1"]
pub type W = crate::W<u32, super::CR1>;
#[doc = "Register CR1 `reset()`'s with value 0"]
impl crate::ResetValue for super::CR1 {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0
    }
}
#[doc = "Reader of field `Reserved32`"]
pub type RESERVED32_R = crate::R<u16, u16>;
#[doc = "Write proxy for field `Reserved32`"]
pub struct RESERVED32_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED32_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u16) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0xffff << 16)) | (((value as u32) & 0xffff) << 16);
        self.w
    }
}
#[doc = "Reader of field `Reserved16`"]
pub type RESERVED16_R = crate::R<u16, u16>;
#[doc = "Write proxy for field `Reserved16`"]
pub struct RESERVED16_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED16_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u16) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x0fff << 4)) | (((value as u32) & 0x0fff) << 4);
        self.w
    }
}
#[doc = "Reader of field `SOD`"]
pub type SOD_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SOD`"]
pub struct SOD_W<'a> {
    w: &'a mut W,
}
impl<'a> SOD_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | (((value as u32) & 0x01) << 3);
        self.w
    }
}
#[doc = "Reader of field `MS`"]
pub type MS_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `MS`"]
pub struct MS_W<'a> {
    w: &'a mut W,
}
impl<'a> MS_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 2)) | (((value as u32) & 0x01) << 2);
        self.w
    }
}
#[doc = "Reader of field `SSE`"]
pub type SSE_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SSE`"]
pub struct SSE_W<'a> {
    w: &'a mut W,
}
impl<'a> SSE_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | (((value as u32) & 0x01) << 1);
        self.w
    }
}
#[doc = "Reader of field `LBM`"]
pub type LBM_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `LBM`"]
pub struct LBM_W<'a> {
    w: &'a mut W,
}
impl<'a> LBM_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | ((value as u32) & 0x01);
        self.w
    }
}
impl R {
    #[doc = "Bits 16:31 - 31:16\\] Reserved"]
    #[inline(always)]
    pub fn reserved32(&self) -> RESERVED32_R {
        RESERVED32_R::new(((self.bits >> 16) & 0xffff) as u16)
    }
    #[doc = "Bits 4:15 - 15:4\\] Reserved, read unpredictable, should be written as 0. 3 SOD"]
    #[inline(always)]
    pub fn reserved16(&self) -> RESERVED16_R {
        RESERVED16_R::new(((self.bits >> 4) & 0x0fff) as u16)
    }
    #[doc = "Bit 3 - 3:3\\] SSI slave mode output disable (R/W) Reset value: 0x0 This bit is relevant only in the slave mode (MS = 1). In multiple-slave systems, it is possible for the SSI master to broadcast a message to all slaves in the system while ensuring that only one slave drives data onto the serial output line. In such systems, the RXD lines from multiple slaves could be tied together. To operate in such a system, the SOD bit can be set if the SSI slave is not suppose to drive the SSITXD line. 0: SSI can drive SSITXD in slave output mode 1: SSI must not drive the SSITXD output in slave mode"]
    #[inline(always)]
    pub fn sod(&self) -> SOD_R {
        SOD_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bit 2 - 2:2\\] SSI master and slave select (R/W) Reset value: 0x0 This bit can be modified only when the SSI is disabled (SSE = 0). 0: Device configured as a master (default) 1: Device configured as a slave"]
    #[inline(always)]
    pub fn ms(&self) -> MS_R {
        MS_R::new(((self.bits >> 2) & 0x01) != 0)
    }
    #[doc = "Bit 1 - 1:1\\] SSI synchronous serial port enable (R/W) Reset value: 0x0 0: SSI operation is disabled. 1: SSI operation is enabled."]
    #[inline(always)]
    pub fn sse(&self) -> SSE_R {
        SSE_R::new(((self.bits >> 1) & 0x01) != 0)
    }
    #[doc = "Bit 0 - 0:0\\] SSI loop-back mode (R/W) Reset value: 0x0 0: Normal serial port operation is enabled. 1: The output of the transmit serial shifter is connected to the input of the receive serial shift register internally."]
    #[inline(always)]
    pub fn lbm(&self) -> LBM_R {
        LBM_R::new((self.bits & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 16:31 - 31:16\\] Reserved"]
    #[inline(always)]
    pub fn reserved32(&mut self) -> RESERVED32_W {
        RESERVED32_W { w: self }
    }
    #[doc = "Bits 4:15 - 15:4\\] Reserved, read unpredictable, should be written as 0. 3 SOD"]
    #[inline(always)]
    pub fn reserved16(&mut self) -> RESERVED16_W {
        RESERVED16_W { w: self }
    }
    #[doc = "Bit 3 - 3:3\\] SSI slave mode output disable (R/W) Reset value: 0x0 This bit is relevant only in the slave mode (MS = 1). In multiple-slave systems, it is possible for the SSI master to broadcast a message to all slaves in the system while ensuring that only one slave drives data onto the serial output line. In such systems, the RXD lines from multiple slaves could be tied together. To operate in such a system, the SOD bit can be set if the SSI slave is not suppose to drive the SSITXD line. 0: SSI can drive SSITXD in slave output mode 1: SSI must not drive the SSITXD output in slave mode"]
    #[inline(always)]
    pub fn sod(&mut self) -> SOD_W {
        SOD_W { w: self }
    }
    #[doc = "Bit 2 - 2:2\\] SSI master and slave select (R/W) Reset value: 0x0 This bit can be modified only when the SSI is disabled (SSE = 0). 0: Device configured as a master (default) 1: Device configured as a slave"]
    #[inline(always)]
    pub fn ms(&mut self) -> MS_W {
        MS_W { w: self }
    }
    #[doc = "Bit 1 - 1:1\\] SSI synchronous serial port enable (R/W) Reset value: 0x0 0: SSI operation is disabled. 1: SSI operation is enabled."]
    #[inline(always)]
    pub fn sse(&mut self) -> SSE_W {
        SSE_W { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] SSI loop-back mode (R/W) Reset value: 0x0 0: Normal serial port operation is enabled. 1: The output of the transmit serial shifter is connected to the input of the receive serial shift register internally."]
    #[inline(always)]
    pub fn lbm(&mut self) -> LBM_W {
        LBM_W { w: self }
    }
}