1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#[doc = "Reader of register MTCTRL"]
pub type R = crate::R<u32, super::MTCTRL>;
#[doc = "Writer for register MTCTRL"]
pub type W = crate::W<u32, super::MTCTRL>;
#[doc = "Register MTCTRL `reset()`'s with value 0"]
impl crate::ResetValue for super::MTCTRL {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0
    }
}
#[doc = "Reader of field `Reserved32`"]
pub type RESERVED32_R = crate::R<u32, u32>;
#[doc = "Write proxy for field `Reserved32`"]
pub struct RESERVED32_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED32_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x00ff_ffff << 8)) | (((value as u32) & 0x00ff_ffff) << 8);
        self.w
    }
}
#[doc = "Reader of field `Reserved8`"]
pub type RESERVED8_R = crate::R<u8, u8>;
#[doc = "Write proxy for field `Reserved8`"]
pub struct RESERVED8_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED8_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x0f << 4)) | (((value as u32) & 0x0f) << 4);
        self.w
    }
}
#[doc = "Reader of field `LATCH_MODE`"]
pub type LATCH_MODE_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `LATCH_MODE`"]
pub struct LATCH_MODE_W<'a> {
    w: &'a mut W,
}
impl<'a> LATCH_MODE_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 3)) | (((value as u32) & 0x01) << 3);
        self.w
    }
}
#[doc = "Reader of field `STATE`"]
pub type STATE_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `STATE`"]
pub struct STATE_W<'a> {
    w: &'a mut W,
}
impl<'a> STATE_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 2)) | (((value as u32) & 0x01) << 2);
        self.w
    }
}
#[doc = "Reader of field `SYNC`"]
pub type SYNC_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SYNC`"]
pub struct SYNC_W<'a> {
    w: &'a mut W,
}
impl<'a> SYNC_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 1)) | (((value as u32) & 0x01) << 1);
        self.w
    }
}
#[doc = "Reader of field `RUN`"]
pub type RUN_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `RUN`"]
pub struct RUN_W<'a> {
    w: &'a mut W,
}
impl<'a> RUN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | ((value as u32) & 0x01);
        self.w
    }
}
impl R {
    #[doc = "Bits 8:31 - 31:8\\] This register is 8 bits in a 32-bit address space."]
    #[inline(always)]
    pub fn reserved32(&self) -> RESERVED32_R {
        RESERVED32_R::new(((self.bits >> 8) & 0x00ff_ffff) as u32)
    }
    #[doc = "Bits 4:7 - 7:4\\] Reserved. Always read 0."]
    #[inline(always)]
    pub fn reserved8(&self) -> RESERVED8_R {
        RESERVED8_R::new(((self.bits >> 4) & 0x0f) as u8)
    }
    #[doc = "Bit 3 - 3:3\\] 0: Reading MTM0 with MTMSEL.MTMSEL = 000 latches the high byte of the timer, making it ready to be read from MTM1. Reading MTMOVF0 with MTMSEL.MTMOVFSEL = 000 latches the two most-significant bytes of the overflow counter, making it possible to read these from MTMOVF1 and MTMOVF2. 1: Reading MTM0 with MTMSEL.MTMSEL = 000 latches the high byte of the timer and the entire overflow counter at once, making it possible to read the values from MTM1, MTMOVF0, MTMOVF1, and MTMOVF2."]
    #[inline(always)]
    pub fn latch_mode(&self) -> LATCH_MODE_R {
        LATCH_MODE_R::new(((self.bits >> 3) & 0x01) != 0)
    }
    #[doc = "Bit 2 - 2:2\\] State of MAC Timer 0: Timer idle 1: Timer running"]
    #[inline(always)]
    pub fn state(&self) -> STATE_R {
        STATE_R::new(((self.bits >> 2) & 0x01) != 0)
    }
    #[doc = "Bit 1 - 1:1\\] 0: Starting and stopping of timer is immediate; that is, synchronous with clk_rf_32m. 1: Starting and stopping of timer occurs at the first positive edge of the 32-kHz clock. For more details regarding timer start and stop, see Section 22.4."]
    #[inline(always)]
    pub fn sync(&self) -> SYNC_R {
        SYNC_R::new(((self.bits >> 1) & 0x01) != 0)
    }
    #[doc = "Bit 0 - 0:0\\] Write 1 to start timer, write 0 to stop timer. When read, it returns the last written value."]
    #[inline(always)]
    pub fn run(&self) -> RUN_R {
        RUN_R::new((self.bits & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 8:31 - 31:8\\] This register is 8 bits in a 32-bit address space."]
    #[inline(always)]
    pub fn reserved32(&mut self) -> RESERVED32_W {
        RESERVED32_W { w: self }
    }
    #[doc = "Bits 4:7 - 7:4\\] Reserved. Always read 0."]
    #[inline(always)]
    pub fn reserved8(&mut self) -> RESERVED8_W {
        RESERVED8_W { w: self }
    }
    #[doc = "Bit 3 - 3:3\\] 0: Reading MTM0 with MTMSEL.MTMSEL = 000 latches the high byte of the timer, making it ready to be read from MTM1. Reading MTMOVF0 with MTMSEL.MTMOVFSEL = 000 latches the two most-significant bytes of the overflow counter, making it possible to read these from MTMOVF1 and MTMOVF2. 1: Reading MTM0 with MTMSEL.MTMSEL = 000 latches the high byte of the timer and the entire overflow counter at once, making it possible to read the values from MTM1, MTMOVF0, MTMOVF1, and MTMOVF2."]
    #[inline(always)]
    pub fn latch_mode(&mut self) -> LATCH_MODE_W {
        LATCH_MODE_W { w: self }
    }
    #[doc = "Bit 2 - 2:2\\] State of MAC Timer 0: Timer idle 1: Timer running"]
    #[inline(always)]
    pub fn state(&mut self) -> STATE_W {
        STATE_W { w: self }
    }
    #[doc = "Bit 1 - 1:1\\] 0: Starting and stopping of timer is immediate; that is, synchronous with clk_rf_32m. 1: Starting and stopping of timer occurs at the first positive edge of the 32-kHz clock. For more details regarding timer start and stop, see Section 22.4."]
    #[inline(always)]
    pub fn sync(&mut self) -> SYNC_W {
        SYNC_W { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] Write 1 to start timer, write 0 to stop timer. When read, it returns the last written value."]
    #[inline(always)]
    pub fn run(&mut self) -> RUN_W {
        RUN_W { w: self }
    }
}