1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#[doc = "Reader of register CTRL_SW_RESET"]
pub type R = crate::R<u32, super::CTRL_SW_RESET>;
#[doc = "Writer for register CTRL_SW_RESET"]
pub type W = crate::W<u32, super::CTRL_SW_RESET>;
#[doc = "Register CTRL_SW_RESET `reset()`'s with value 0"]
impl crate::ResetValue for super::CTRL_SW_RESET {
    type Type = u32;
    #[inline(always)]
    fn reset_value() -> Self::Type {
        0
    }
}
#[doc = "Reader of field `Reserved31`"]
pub type RESERVED31_R = crate::R<u32, u32>;
#[doc = "Write proxy for field `Reserved31`"]
pub struct RESERVED31_W<'a> {
    w: &'a mut W,
}
impl<'a> RESERVED31_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x7fff_ffff << 1)) | (((value as u32) & 0x7fff_ffff) << 1);
        self.w
    }
}
#[doc = "Reader of field `SW_RESET`"]
pub type SW_RESET_R = crate::R<bool, bool>;
#[doc = "Write proxy for field `SW_RESET`"]
pub struct SW_RESET_W<'a> {
    w: &'a mut W,
}
impl<'a> SW_RESET_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x01) | ((value as u32) & 0x01);
        self.w
    }
}
impl R {
    #[doc = "Bits 1:31 - 31:1\\] Bits should be written with 0s and ignored on read."]
    #[inline(always)]
    pub fn reserved31(&self) -> RESERVED31_R {
        RESERVED31_R::new(((self.bits >> 1) & 0x7fff_ffff) as u32)
    }
    #[doc = "Bit 0 - 0:0\\] If this bit is set to 1, the following modules are reset: - Master control internal state is reset. That includes interrupt, error status register, and result available interrupt generation FSM. - Key store module state is reset. That includes clearing the written area flags; therefore, the keys must be reloaded to the key store module. Writing 0 has no effect. The bit is self cleared after executing the reset."]
    #[inline(always)]
    pub fn sw_reset(&self) -> SW_RESET_R {
        SW_RESET_R::new((self.bits & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 1:31 - 31:1\\] Bits should be written with 0s and ignored on read."]
    #[inline(always)]
    pub fn reserved31(&mut self) -> RESERVED31_W {
        RESERVED31_W { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] If this bit is set to 1, the following modules are reset: - Master control internal state is reset. That includes interrupt, error status register, and result available interrupt generation FSM. - Key store module state is reset. That includes clearing the written area flags; therefore, the keys must be reloaded to the key store module. Writing 0 has no effect. The bit is self cleared after executing the reset."]
    #[inline(always)]
    pub fn sw_reset(&mut self) -> SW_RESET_W {
        SW_RESET_W { w: self }
    }
}