1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::STATUS {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct TESTR {
    bits: u8,
}
impl TESTR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED21R {
    bits: u8,
}
impl RESERVED21R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct TOTALCHANNELSR {
    bits: u8,
}
impl TOTALCHANNELSR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED8R {
    bits: u8,
}
impl RESERVED8R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct STATER {
    bits: u8,
}
impl STATER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED1R {
    bits: u8,
}
impl RESERVED1R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct MASTERENABLER {
    bits: bool,
}
impl MASTERENABLER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Proxy"]
pub struct _TESTW<'a> {
    w: &'a mut W,
}
impl<'a> _TESTW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 28;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED21W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED21W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 127;
        const OFFSET: u8 = 21;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _TOTALCHANNELSW<'a> {
    w: &'a mut W,
}
impl<'a> _TOTALCHANNELSW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 31;
        const OFFSET: u8 = 16;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED8W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED8W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 255;
        const OFFSET: u8 = 8;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _STATEW<'a> {
    w: &'a mut W,
}
impl<'a> _STATEW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 4;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED1W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED1W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 7;
        const OFFSET: u8 = 1;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _MASTERENABLEW<'a> {
    w: &'a mut W,
}
impl<'a> _MASTERENABLEW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 28:31 - 31:28\\] 0x0: Controller does not include the integration test logic 0x1: Controller includes the integration test logic 0x2: Undefined ... 0xF: Undefined"]
    #[inline]
    pub fn test(&self) -> TESTR {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 28;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        TESTR { bits }
    }
    #[doc = "Bits 21:27 - 27:21\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved21(&self) -> RESERVED21R {
        let bits = {
            const MASK: u8 = 127;
            const OFFSET: u8 = 21;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED21R { bits }
    }
    #[doc = "Bits 16:20 - 20:16\\] Register value returns number of available uDMA channels minus one. For example a read out value of: 0x00: Show that the controller is configured to use 1 uDMA channel 0x01: Shows that the controller is configured to use 2 uDMA channels ... 0x1F: Shows that the controller is configured to use 32 uDMA channels (32-1=31=0x1F)"]
    #[inline]
    pub fn totalchannels(&self) -> TOTALCHANNELSR {
        let bits = {
            const MASK: u8 = 31;
            const OFFSET: u8 = 16;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        TOTALCHANNELSR { bits }
    }
    #[doc = "Bits 8:15 - 15:8\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved8(&self) -> RESERVED8R {
        let bits = {
            const MASK: u8 = 255;
            const OFFSET: u8 = 8;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED8R { bits }
    }
    #[doc = "Bits 4:7 - 7:4\\] Current state of the control state machine. State can be one of the following: 0x0: Idle 0x1: Reading channel controller data 0x2: Reading source data end pointer 0x3: Reading destination data end pointer 0x4: Reading source data 0x5: Writing destination data 0x6: Waiting for uDMA request to clear 0x7: Writing channel controller data 0x8: Stalled 0x9: Done 0xA: Peripheral scatter-gather transition 0xB: Undefined ... 0xF: Undefined."]
    #[inline]
    pub fn state(&self) -> STATER {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 4;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        STATER { bits }
    }
    #[doc = "Bits 1:3 - 3:1\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved1(&self) -> RESERVED1R {
        let bits = {
            const MASK: u8 = 7;
            const OFFSET: u8 = 1;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED1R { bits }
    }
    #[doc = "Bit 0 - 0:0\\] Shows the enable status of the controller as configured by CFG.MASTERENABLE: 0: Controller is disabled 1: Controller is enabled"]
    #[inline]
    pub fn masterenable(&self) -> MASTERENABLER {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        MASTERENABLER { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 2031616 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 28:31 - 31:28\\] 0x0: Controller does not include the integration test logic 0x1: Controller includes the integration test logic 0x2: Undefined ... 0xF: Undefined"]
    #[inline]
    pub fn test(&mut self) -> _TESTW {
        _TESTW { w: self }
    }
    #[doc = "Bits 21:27 - 27:21\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved21(&mut self) -> _RESERVED21W {
        _RESERVED21W { w: self }
    }
    #[doc = "Bits 16:20 - 20:16\\] Register value returns number of available uDMA channels minus one. For example a read out value of: 0x00: Show that the controller is configured to use 1 uDMA channel 0x01: Shows that the controller is configured to use 2 uDMA channels ... 0x1F: Shows that the controller is configured to use 32 uDMA channels (32-1=31=0x1F)"]
    #[inline]
    pub fn totalchannels(&mut self) -> _TOTALCHANNELSW {
        _TOTALCHANNELSW { w: self }
    }
    #[doc = "Bits 8:15 - 15:8\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved8(&mut self) -> _RESERVED8W {
        _RESERVED8W { w: self }
    }
    #[doc = "Bits 4:7 - 7:4\\] Current state of the control state machine. State can be one of the following: 0x0: Idle 0x1: Reading channel controller data 0x2: Reading source data end pointer 0x3: Reading destination data end pointer 0x4: Reading source data 0x5: Writing destination data 0x6: Waiting for uDMA request to clear 0x7: Writing channel controller data 0x8: Stalled 0x9: Done 0xA: Peripheral scatter-gather transition 0xB: Undefined ... 0xF: Undefined."]
    #[inline]
    pub fn state(&mut self) -> _STATEW {
        _STATEW { w: self }
    }
    #[doc = "Bits 1:3 - 3:1\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved1(&mut self) -> _RESERVED1W {
        _RESERVED1W { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] Shows the enable status of the controller as configured by CFG.MASTERENABLE: 0: Controller is disabled 1: Controller is enabled"]
    #[inline]
    pub fn masterenable(&mut self) -> _MASTERENABLEW {
        _MASTERENABLEW { w: self }
    }
}