1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::CFG {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED8R {
    bits: u32,
}
impl RESERVED8R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct PRTOCTRLR {
    bits: u8,
}
impl PRTOCTRLR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED1R {
    bits: u8,
}
impl RESERVED1R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct MASTERENABLER {
    bits: bool,
}
impl MASTERENABLER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED8W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED8W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        const MASK: u32 = 16777215;
        const OFFSET: u8 = 8;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _PRTOCTRLW<'a> {
    w: &'a mut W,
}
impl<'a> _PRTOCTRLW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 7;
        const OFFSET: u8 = 5;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED1W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED1W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 1;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _MASTERENABLEW<'a> {
    w: &'a mut W,
}
impl<'a> _MASTERENABLEW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 8:31 - 31:8\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved8(&self) -> RESERVED8R {
        let bits = {
            const MASK: u32 = 16777215;
            const OFFSET: u8 = 8;
            ((self.bits >> OFFSET) & MASK as u32) as u32
        };
        RESERVED8R { bits }
    }
    #[doc = "Bits 5:7 - 7:5\\] Sets the AHB-Lite bus protocol protection state by controlling the AHB signal HProt\\[3:1\\] as follows: Bit \\[7\\] Controls HProt\\[3\\] to indicate if a cacheable access is occurring. Bit \\[6\\] Controls HProt\\[2\\] to indicate if a bufferable access is occurring. Bit \\[5\\] Controls HProt\\[1\\] to indicate if a privileged access is occurring. When bit \\[n\\] = 1 then the corresponding HProt bit is high. When bit \\[n\\] = 0 then the corresponding HProt bit is low. This field controls HProt\\[3:1\\] signal for all transactions initiated by uDMA except two transactions below: - the read from the address indicated by source address pointer - the write to the address indicated by destination address pointer HProt\\[3:1\\] for these two exceptions can be controlled by dedicated fields in the channel configutation descriptor."]
    #[inline]
    pub fn prtoctrl(&self) -> PRTOCTRLR {
        let bits = {
            const MASK: u8 = 7;
            const OFFSET: u8 = 5;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        PRTOCTRLR { bits }
    }
    #[doc = "Bits 1:4 - 4:1\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved1(&self) -> RESERVED1R {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 1;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED1R { bits }
    }
    #[doc = "Bit 0 - 0:0\\] Enables the controller: 0: Disables the controller 1: Enables the controller"]
    #[inline]
    pub fn masterenable(&self) -> MASTERENABLER {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        MASTERENABLER { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 0 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 8:31 - 31:8\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved8(&mut self) -> _RESERVED8W {
        _RESERVED8W { w: self }
    }
    #[doc = "Bits 5:7 - 7:5\\] Sets the AHB-Lite bus protocol protection state by controlling the AHB signal HProt\\[3:1\\] as follows: Bit \\[7\\] Controls HProt\\[3\\] to indicate if a cacheable access is occurring. Bit \\[6\\] Controls HProt\\[2\\] to indicate if a bufferable access is occurring. Bit \\[5\\] Controls HProt\\[1\\] to indicate if a privileged access is occurring. When bit \\[n\\] = 1 then the corresponding HProt bit is high. When bit \\[n\\] = 0 then the corresponding HProt bit is low. This field controls HProt\\[3:1\\] signal for all transactions initiated by uDMA except two transactions below: - the read from the address indicated by source address pointer - the write to the address indicated by destination address pointer HProt\\[3:1\\] for these two exceptions can be controlled by dedicated fields in the channel configutation descriptor."]
    #[inline]
    pub fn prtoctrl(&mut self) -> _PRTOCTRLW {
        _PRTOCTRLW { w: self }
    }
    #[doc = "Bits 1:4 - 4:1\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved1(&mut self) -> _RESERVED1W {
        _RESERVED1W { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] Enables the controller: 0: Disables the controller 1: Enables the controller"]
    #[inline]
    pub fn masterenable(&mut self) -> _MASTERENABLEW {
        _MASTERENABLEW { w: self }
    }
}