1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::AIFWMASK0 {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED8R {
    bits: u32,
}
impl RESERVED8R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct MASKR {
    bits: u8,
}
impl MASKR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED8W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED8W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u32) -> &'a mut W {
        const MASK: u32 = 16777215;
        const OFFSET: u8 = 8;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _MASKW<'a> {
    w: &'a mut W,
}
impl<'a> _MASKW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 255;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 8:31 - 31:8\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved8(&self) -> RESERVED8R {
        let bits = {
            const MASK: u32 = 16777215;
            const OFFSET: u8 = 8;
            ((self.bits >> OFFSET) & MASK as u32) as u32
        };
        RESERVED8R { bits }
    }
    #[doc = "Bits 0:7 - 7:0\\] Bit-mask indicating valid channels in a frame on AD0. In single-phase mode, each bit represents one channel, starting with LSB for the first word in the frame. A frame can contain up to 8 channels. Channels that are not included in the mask will not be sampled and stored in memory, and clocked out as '0'. In dual-phase mode, only the two LSBs are considered. For a stereo configuration, set both bits. For a mono configuration, set bit 0 only. In mono mode, only channel 0 will be sampled and stored to memory, and channel 0 will be repeated when clocked out. In mono mode, only channel 0 will be sampled and stored to memory, and channel 0 will be repeated in the second phase when clocked out. If all bits are zero, no input words will be stored to memory, and the output data lines will be constant '0'. This can be utilized when PWM debug output is desired without any actively used output pins."]
    #[inline]
    pub fn mask(&self) -> MASKR {
        let bits = {
            const MASK: u8 = 255;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        MASKR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 3 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 8:31 - 31:8\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved8(&mut self) -> _RESERVED8W {
        _RESERVED8W { w: self }
    }
    #[doc = "Bits 0:7 - 7:0\\] Bit-mask indicating valid channels in a frame on AD0. In single-phase mode, each bit represents one channel, starting with LSB for the first word in the frame. A frame can contain up to 8 channels. Channels that are not included in the mask will not be sampled and stored in memory, and clocked out as '0'. In dual-phase mode, only the two LSBs are considered. For a stereo configuration, set both bits. For a mono configuration, set bit 0 only. In mono mode, only channel 0 will be sampled and stored to memory, and channel 0 will be repeated when clocked out. In mono mode, only channel 0 will be sampled and stored to memory, and channel 0 will be repeated in the second phase when clocked out. If all bits are zero, no input words will be stored to memory, and the output data lines will be constant '0'. This can be utilized when PWM debug output is desired without any actively used output pins."]
    #[inline]
    pub fn mask(&mut self) -> _MASKW {
        _MASKW { w: self }
    }
}