1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::AESCTL {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct CONTEXT_READYR {
    bits: bool,
}
impl CONTEXT_READYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct SAVED_CONTEXT_RDYR {
    bits: bool,
}
impl SAVED_CONTEXT_RDYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct SAVE_CONTEXTR {
    bits: bool,
}
impl SAVE_CONTEXTR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED25R {
    bits: u8,
}
impl RESERVED25R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct CCM_MR {
    bits: u8,
}
impl CCM_MR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct CCM_LR {
    bits: u8,
}
impl CCM_LR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct CCMR {
    bits: bool,
}
impl CCMR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct GCMR {
    bits: u8,
}
impl GCMR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct CBC_MACR {
    bits: bool,
}
impl CBC_MACR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED9R {
    bits: u8,
}
impl RESERVED9R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = "Possible values of the field `CTR_WIDTH`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CTR_WIDTHR {
    #[doc = "128 bits"]
    _128_BIT,
    #[doc = "96 bits"]
    _96_BIT,
    #[doc = "64 bits"]
    _64_BIT,
    #[doc = "32 bits"]
    _32_BIT,
}
impl CTR_WIDTHR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        match *self {
            CTR_WIDTHR::_128_BIT => 3,
            CTR_WIDTHR::_96_BIT => 2,
            CTR_WIDTHR::_64_BIT => 1,
            CTR_WIDTHR::_32_BIT => 0,
        }
    }
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _from(value: u8) -> CTR_WIDTHR {
        match value {
            3 => CTR_WIDTHR::_128_BIT,
            2 => CTR_WIDTHR::_96_BIT,
            1 => CTR_WIDTHR::_64_BIT,
            0 => CTR_WIDTHR::_32_BIT,
            _ => unreachable!(),
        }
    }
    #[doc = "Checks if the value of the field is `_128_BIT`"]
    #[inline]
    pub fn is_128_bit(&self) -> bool {
        *self == CTR_WIDTHR::_128_BIT
    }
    #[doc = "Checks if the value of the field is `_96_BIT`"]
    #[inline]
    pub fn is_96_bit(&self) -> bool {
        *self == CTR_WIDTHR::_96_BIT
    }
    #[doc = "Checks if the value of the field is `_64_BIT`"]
    #[inline]
    pub fn is_64_bit(&self) -> bool {
        *self == CTR_WIDTHR::_64_BIT
    }
    #[doc = "Checks if the value of the field is `_32_BIT`"]
    #[inline]
    pub fn is_32_bit(&self) -> bool {
        *self == CTR_WIDTHR::_32_BIT
    }
}
#[doc = r" Value of the field"]
pub struct CTRR {
    bits: bool,
}
impl CTRR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct CBCR {
    bits: bool,
}
impl CBCR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct KEY_SIZER {
    bits: u8,
}
impl KEY_SIZER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct DIRR {
    bits: bool,
}
impl DIRR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct INPUT_READYR {
    bits: bool,
}
impl INPUT_READYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct OUTPUT_READYR {
    bits: bool,
}
impl OUTPUT_READYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Proxy"]
pub struct _CONTEXT_READYW<'a> {
    w: &'a mut W,
}
impl<'a> _CONTEXT_READYW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 31;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _SAVED_CONTEXT_RDYW<'a> {
    w: &'a mut W,
}
impl<'a> _SAVED_CONTEXT_RDYW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 30;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _SAVE_CONTEXTW<'a> {
    w: &'a mut W,
}
impl<'a> _SAVE_CONTEXTW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 29;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED25W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED25W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 25;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _CCM_MW<'a> {
    w: &'a mut W,
}
impl<'a> _CCM_MW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 7;
        const OFFSET: u8 = 22;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _CCM_LW<'a> {
    w: &'a mut W,
}
impl<'a> _CCM_LW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 7;
        const OFFSET: u8 = 19;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _CCMW<'a> {
    w: &'a mut W,
}
impl<'a> _CCMW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 18;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _GCMW<'a> {
    w: &'a mut W,
}
impl<'a> _GCMW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 3;
        const OFFSET: u8 = 16;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _CBC_MACW<'a> {
    w: &'a mut W,
}
impl<'a> _CBC_MACW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 15;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED9W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED9W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 63;
        const OFFSET: u8 = 9;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = "Values that can be written to the field `CTR_WIDTH`"]
pub enum CTR_WIDTHW {
    #[doc = "128 bits"]
    _128_BIT,
    #[doc = "96 bits"]
    _96_BIT,
    #[doc = "64 bits"]
    _64_BIT,
    #[doc = "32 bits"]
    _32_BIT,
}
impl CTR_WIDTHW {
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _bits(&self) -> u8 {
        match *self {
            CTR_WIDTHW::_128_BIT => 3,
            CTR_WIDTHW::_96_BIT => 2,
            CTR_WIDTHW::_64_BIT => 1,
            CTR_WIDTHW::_32_BIT => 0,
        }
    }
}
#[doc = r" Proxy"]
pub struct _CTR_WIDTHW<'a> {
    w: &'a mut W,
}
impl<'a> _CTR_WIDTHW<'a> {
    #[doc = r" Writes `variant` to the field"]
    #[inline]
    pub fn variant(self, variant: CTR_WIDTHW) -> &'a mut W {
        {
            self.bits(variant._bits())
        }
    }
    #[doc = "128 bits"]
    #[inline]
    pub fn _128_bit(self) -> &'a mut W {
        self.variant(CTR_WIDTHW::_128_BIT)
    }
    #[doc = "96 bits"]
    #[inline]
    pub fn _96_bit(self) -> &'a mut W {
        self.variant(CTR_WIDTHW::_96_BIT)
    }
    #[doc = "64 bits"]
    #[inline]
    pub fn _64_bit(self) -> &'a mut W {
        self.variant(CTR_WIDTHW::_64_BIT)
    }
    #[doc = "32 bits"]
    #[inline]
    pub fn _32_bit(self) -> &'a mut W {
        self.variant(CTR_WIDTHW::_32_BIT)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 3;
        const OFFSET: u8 = 7;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _CTRW<'a> {
    w: &'a mut W,
}
impl<'a> _CTRW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 6;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _CBCW<'a> {
    w: &'a mut W,
}
impl<'a> _CBCW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 5;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _KEY_SIZEW<'a> {
    w: &'a mut W,
}
impl<'a> _KEY_SIZEW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 3;
        const OFFSET: u8 = 3;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _DIRW<'a> {
    w: &'a mut W,
}
impl<'a> _DIRW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 2;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _INPUT_READYW<'a> {
    w: &'a mut W,
}
impl<'a> _INPUT_READYW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 1;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _OUTPUT_READYW<'a> {
    w: &'a mut W,
}
impl<'a> _OUTPUT_READYW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 31 - 31:31\\] If 1, this read-only status bit indicates that the context data registers can be overwritten and the host is permitted to write the next context."]
    #[inline]
    pub fn context_ready(&self) -> CONTEXT_READYR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 31;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        CONTEXT_READYR { bits }
    }
    #[doc = "Bit 30 - 30:30\\] If 1, this status bit indicates that an AES authentication TAG and/or IV block(s) is/are available for the host to retrieve. This bit is only asserted if the save_context bit is set to 1. The bit is mutual exclusive with the context_ready bit. Writing one clears the bit to 0, indicating the AES core can start its next operation. This bit is also cleared when the 4th word of the output TAG and/or IV is read. Note: All other mode bit writes are ignored when this mode bit is written with 1. Note: This bit is controlled automatically by the EIP-120t for TAG read DMA operations."]
    #[inline]
    pub fn saved_context_rdy(&self) -> SAVED_CONTEXT_RDYR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 30;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        SAVED_CONTEXT_RDYR { bits }
    }
    #[doc = "Bit 29 - 29:29\\] This bit indicates that an authentication TAG or result IV needs to be stored as a result context. Typically this bit must be set for authentication modes returning a TAG (CBC-MAC, GCM and CCM), or for basic encryption modes that require future continuation with the current result IV. If this bit is set, the engine retains its full context until the TAG and/or IV registers are read. The TAG or IV must be read before the AES engine can start a new operation."]
    #[inline]
    pub fn save_context(&self) -> SAVE_CONTEXTR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 29;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        SAVE_CONTEXTR { bits }
    }
    #[doc = "Bits 25:28 - 28:25\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved25(&self) -> RESERVED25R {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 25;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED25R { bits }
    }
    #[doc = "Bits 22:24 - 24:22\\] Defines M, which indicates the length of the authentication field for CCM operations; the authentication field length equals two times (the value of CCM-M plus one). Note: The EIP-120t always returns a 128-bit authentication field, of which the M least significant bytes are valid. All values are supported."]
    #[inline]
    pub fn ccm_m(&self) -> CCM_MR {
        let bits = {
            const MASK: u8 = 7;
            const OFFSET: u8 = 22;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        CCM_MR { bits }
    }
    #[doc = "Bits 19:21 - 21:19\\] Defines L, which indicates the width of the length field for CCM operations; the length field in bytes equals the value of CMM-L plus one. All values are supported."]
    #[inline]
    pub fn ccm_l(&self) -> CCM_LR {
        let bits = {
            const MASK: u8 = 7;
            const OFFSET: u8 = 19;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        CCM_LR { bits }
    }
    #[doc = "Bit 18 - 18:18\\] If set to 1, AES-CCM is selected AES-CCM is a combined mode, using AES for authentication and encryption. Note: Selecting AES-CCM mode requires writing of the AAD length register after all other registers. Note: The CTR mode bit in this register must also be set to 1 to enable AES-CTR; selecting other AES modes than CTR mode is invalid."]
    #[inline]
    pub fn ccm(&self) -> CCMR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 18;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        CCMR { bits }
    }
    #[doc = "Bits 16:17 - 17:16\\] Set these bits to 11 to select AES-GCM mode. AES-GCM is a combined mode, using the Galois field multiplier GF(2 to the power of 128) for authentication and AES-CTR mode for encryption. Note: The CTR mode bit in this register must also be set to 1 to enable AES-CTR Bit combination description: 00 = No GCM mode 01 = Reserved, do not select 10 = Reserved, do not select 11 = Autonomous GHASH (both H- and Y0-encrypted calculated internally) Note: The EIP-120t-1 configuration only supports mode 11 (autonomous GHASH), other GCM modes are not allowed."]
    #[inline]
    pub fn gcm(&self) -> GCMR {
        let bits = {
            const MASK: u8 = 3;
            const OFFSET: u8 = 16;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        GCMR { bits }
    }
    #[doc = "Bit 15 - 15:15\\] Set to 1 to select AES-CBC MAC mode. The direction bit must be set to 1 for this mode. Selecting this mode requires writing the length register after all other registers."]
    #[inline]
    pub fn cbc_mac(&self) -> CBC_MACR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 15;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        CBC_MACR { bits }
    }
    #[doc = "Bits 9:14 - 14:9\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved9(&self) -> RESERVED9R {
        let bits = {
            const MASK: u8 = 63;
            const OFFSET: u8 = 9;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED9R { bits }
    }
    #[doc = "Bits 7:8 - 8:7\\] Specifies the counter width for AES-CTR mode 00 = 32-bit counter 01 = 64-bit counter 10 = 96-bit counter 11 = 128-bit counter"]
    #[inline]
    pub fn ctr_width(&self) -> CTR_WIDTHR {
        CTR_WIDTHR::_from({
            const MASK: u8 = 3;
            const OFFSET: u8 = 7;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        })
    }
    #[doc = "Bit 6 - 6:6\\] If set to 1, AES counter mode (CTR) is selected. Note: This bit must also be set for GCM and CCM, when encryption/decryption is required."]
    #[inline]
    pub fn ctr(&self) -> CTRR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 6;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        CTRR { bits }
    }
    #[doc = "Bit 5 - 5:5\\] If set to 1, cipher-block-chaining (CBC) mode is selected."]
    #[inline]
    pub fn cbc(&self) -> CBCR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 5;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        CBCR { bits }
    }
    #[doc = "Bits 3:4 - 4:3\\] This read-only field specifies the key size. The key size is automatically configured when a new key is loaded through the key store module. 00 = N/A - Reserved 01 = 128-bit 10 = 192-bit 11 = 256-bit"]
    #[inline]
    pub fn key_size(&self) -> KEY_SIZER {
        let bits = {
            const MASK: u8 = 3;
            const OFFSET: u8 = 3;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        KEY_SIZER { bits }
    }
    #[doc = "Bit 2 - 2:2\\] If set to 1 an encrypt operation is performed. If set to 0 a decrypt operation is performed. This bit must be written with a 1 when CBC-MAC is selected."]
    #[inline]
    pub fn dir(&self) -> DIRR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 2;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        DIRR { bits }
    }
    #[doc = "Bit 1 - 1:1\\] If 1, this status bit indicates that the 16-byte AES input buffer is empty. The host is permitted to write the next block of data. Writing 0 clears the bit to 0 and indicates that the AES core can use the provided input data block. Writing 1 to this bit is ignored. Note: For DMA operations, this bit is automatically controlled by the EIP-120t. After reset, this bit is 0. After writing a context, this bit becomes 1."]
    #[inline]
    pub fn input_ready(&self) -> INPUT_READYR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 1;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        INPUT_READYR { bits }
    }
    #[doc = "Bit 0 - 0:0\\] If 1, this status bit indicates that an AES output block is available to be retrieved by the host. Writing 0 clears the bit to 0 and indicates that output data is read by the host. The AES core can provide a next output data block. Writing 1 to this bit is ignored. Note: For DMA operations, this bit is automatically controlled by the EIP-120t."]
    #[inline]
    pub fn output_ready(&self) -> OUTPUT_READYR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        OUTPUT_READYR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 2147483648 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bit 31 - 31:31\\] If 1, this read-only status bit indicates that the context data registers can be overwritten and the host is permitted to write the next context."]
    #[inline]
    pub fn context_ready(&mut self) -> _CONTEXT_READYW {
        _CONTEXT_READYW { w: self }
    }
    #[doc = "Bit 30 - 30:30\\] If 1, this status bit indicates that an AES authentication TAG and/or IV block(s) is/are available for the host to retrieve. This bit is only asserted if the save_context bit is set to 1. The bit is mutual exclusive with the context_ready bit. Writing one clears the bit to 0, indicating the AES core can start its next operation. This bit is also cleared when the 4th word of the output TAG and/or IV is read. Note: All other mode bit writes are ignored when this mode bit is written with 1. Note: This bit is controlled automatically by the EIP-120t for TAG read DMA operations."]
    #[inline]
    pub fn saved_context_rdy(&mut self) -> _SAVED_CONTEXT_RDYW {
        _SAVED_CONTEXT_RDYW { w: self }
    }
    #[doc = "Bit 29 - 29:29\\] This bit indicates that an authentication TAG or result IV needs to be stored as a result context. Typically this bit must be set for authentication modes returning a TAG (CBC-MAC, GCM and CCM), or for basic encryption modes that require future continuation with the current result IV. If this bit is set, the engine retains its full context until the TAG and/or IV registers are read. The TAG or IV must be read before the AES engine can start a new operation."]
    #[inline]
    pub fn save_context(&mut self) -> _SAVE_CONTEXTW {
        _SAVE_CONTEXTW { w: self }
    }
    #[doc = "Bits 25:28 - 28:25\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved25(&mut self) -> _RESERVED25W {
        _RESERVED25W { w: self }
    }
    #[doc = "Bits 22:24 - 24:22\\] Defines M, which indicates the length of the authentication field for CCM operations; the authentication field length equals two times (the value of CCM-M plus one). Note: The EIP-120t always returns a 128-bit authentication field, of which the M least significant bytes are valid. All values are supported."]
    #[inline]
    pub fn ccm_m(&mut self) -> _CCM_MW {
        _CCM_MW { w: self }
    }
    #[doc = "Bits 19:21 - 21:19\\] Defines L, which indicates the width of the length field for CCM operations; the length field in bytes equals the value of CMM-L plus one. All values are supported."]
    #[inline]
    pub fn ccm_l(&mut self) -> _CCM_LW {
        _CCM_LW { w: self }
    }
    #[doc = "Bit 18 - 18:18\\] If set to 1, AES-CCM is selected AES-CCM is a combined mode, using AES for authentication and encryption. Note: Selecting AES-CCM mode requires writing of the AAD length register after all other registers. Note: The CTR mode bit in this register must also be set to 1 to enable AES-CTR; selecting other AES modes than CTR mode is invalid."]
    #[inline]
    pub fn ccm(&mut self) -> _CCMW {
        _CCMW { w: self }
    }
    #[doc = "Bits 16:17 - 17:16\\] Set these bits to 11 to select AES-GCM mode. AES-GCM is a combined mode, using the Galois field multiplier GF(2 to the power of 128) for authentication and AES-CTR mode for encryption. Note: The CTR mode bit in this register must also be set to 1 to enable AES-CTR Bit combination description: 00 = No GCM mode 01 = Reserved, do not select 10 = Reserved, do not select 11 = Autonomous GHASH (both H- and Y0-encrypted calculated internally) Note: The EIP-120t-1 configuration only supports mode 11 (autonomous GHASH), other GCM modes are not allowed."]
    #[inline]
    pub fn gcm(&mut self) -> _GCMW {
        _GCMW { w: self }
    }
    #[doc = "Bit 15 - 15:15\\] Set to 1 to select AES-CBC MAC mode. The direction bit must be set to 1 for this mode. Selecting this mode requires writing the length register after all other registers."]
    #[inline]
    pub fn cbc_mac(&mut self) -> _CBC_MACW {
        _CBC_MACW { w: self }
    }
    #[doc = "Bits 9:14 - 14:9\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved9(&mut self) -> _RESERVED9W {
        _RESERVED9W { w: self }
    }
    #[doc = "Bits 7:8 - 8:7\\] Specifies the counter width for AES-CTR mode 00 = 32-bit counter 01 = 64-bit counter 10 = 96-bit counter 11 = 128-bit counter"]
    #[inline]
    pub fn ctr_width(&mut self) -> _CTR_WIDTHW {
        _CTR_WIDTHW { w: self }
    }
    #[doc = "Bit 6 - 6:6\\] If set to 1, AES counter mode (CTR) is selected. Note: This bit must also be set for GCM and CCM, when encryption/decryption is required."]
    #[inline]
    pub fn ctr(&mut self) -> _CTRW {
        _CTRW { w: self }
    }
    #[doc = "Bit 5 - 5:5\\] If set to 1, cipher-block-chaining (CBC) mode is selected."]
    #[inline]
    pub fn cbc(&mut self) -> _CBCW {
        _CBCW { w: self }
    }
    #[doc = "Bits 3:4 - 4:3\\] This read-only field specifies the key size. The key size is automatically configured when a new key is loaded through the key store module. 00 = N/A - Reserved 01 = 128-bit 10 = 192-bit 11 = 256-bit"]
    #[inline]
    pub fn key_size(&mut self) -> _KEY_SIZEW {
        _KEY_SIZEW { w: self }
    }
    #[doc = "Bit 2 - 2:2\\] If set to 1 an encrypt operation is performed. If set to 0 a decrypt operation is performed. This bit must be written with a 1 when CBC-MAC is selected."]
    #[inline]
    pub fn dir(&mut self) -> _DIRW {
        _DIRW { w: self }
    }
    #[doc = "Bit 1 - 1:1\\] If 1, this status bit indicates that the 16-byte AES input buffer is empty. The host is permitted to write the next block of data. Writing 0 clears the bit to 0 and indicates that the AES core can use the provided input data block. Writing 1 to this bit is ignored. Note: For DMA operations, this bit is automatically controlled by the EIP-120t. After reset, this bit is 0. After writing a context, this bit becomes 1."]
    #[inline]
    pub fn input_ready(&mut self) -> _INPUT_READYW {
        _INPUT_READYW { w: self }
    }
    #[doc = "Bit 0 - 0:0\\] If 1, this status bit indicates that an AES output block is available to be retrieved by the host. Writing 0 clears the bit to 0 and indicates that output data is read by the host. The AES core can provide a next output data block. Writing 1 to this bit is ignored. Note: For DMA operations, this bit is automatically controlled by the EIP-120t."]
    #[inline]
    pub fn output_ready(&mut self) -> _OUTPUT_READYW {
        _OUTPUT_READYW { w: self }
    }
}