1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#![no_std]

extern crate embedded_hal as hal;

#[cfg(feature = "std")]
extern crate std;

use core::fmt::{self, Display, Formatter};
use hal::spi::SpiDevice;

#[macro_use]
pub mod lowlevel;
mod rssi;

use lowlevel::convert::*;
use lowlevel::registers::*;
use lowlevel::types::*;
use rssi::rssi_to_dbm;

/// CC1101 errors.
#[derive(Debug)]
pub enum Error<SpiE> {
    /// The RX FIFO buffer overflowed, too small buffer for configured packet length.
    RxOverflow,
    /// Corrupt packet received with invalid CRC.
    CrcMismatch,
    /// Platform-dependent SPI-errors, such as IO errors.
    Spi(SpiE),
}

impl<SpiE> From<SpiE> for Error<SpiE> {
    fn from(e: SpiE) -> Self {
        Error::Spi(e)
    }
}

impl<SpiE: Display> Display for Error<SpiE> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        match self {
            Self::RxOverflow => write!(f, "RX FIFO buffer overflowed"),
            Self::CrcMismatch => write!(f, "CRC mismatch"),
            Self::Spi(e) => write!(f, "SPI error: {}", e),
        }
    }
}

#[cfg(feature = "std")]
impl<SpiE: Display + core::fmt::Debug> std::error::Error for Error<SpiE> {}

/// High level API for interacting with the CC1101 radio chip.
pub struct Cc1101<SPI>(lowlevel::Cc1101<SPI>);

impl<SPI, SpiE> Cc1101<SPI>
where
    SPI: SpiDevice<u8, Error = SpiE>,
{
    pub fn new(spi: SPI) -> Result<Self, Error<SpiE>> {
        Ok(Cc1101(lowlevel::Cc1101::new(spi)?))
    }

    /// Sets the carrier frequency (in Hertz).
    pub fn set_frequency(&mut self, hz: u64) -> Result<(), Error<SpiE>> {
        let (freq0, freq1, freq2) = from_frequency(hz);
        self.0.write_register(Config::FREQ0, freq0)?;
        self.0.write_register(Config::FREQ1, freq1)?;
        self.0.write_register(Config::FREQ2, freq2)?;
        Ok(())
    }

    /// Sets the frequency synthesizer intermediate frequency (in Hertz).
    pub fn set_synthesizer_if(&mut self, hz: u64) -> Result<(), Error<SpiE>> {
        self.0
            .write_register(Config::FSCTRL1, FSCTRL1::default().freq_if(from_freq_if(hz)).bits())?;
        Ok(())
    }

    /// Sets the target value for the averaged amplitude from the digital channel filter.
    pub fn set_agc_target(&mut self, target: TargetAmplitude) -> Result<(), Error<SpiE>> {
        self.0.modify_register(Config::AGCCTRL2, |r| {
            AGCCTRL2(r).modify().magn_target(target.into()).bits()
        })?;
        Ok(())
    }

    /// Sets the filter length (in FSK/MSK mode) or decision boundary (in OOK/ASK mode) for the AGC.
    pub fn set_agc_filter_length(
        &mut self,
        filter_length: FilterLength,
    ) -> Result<(), Error<SpiE>> {
        self.0.modify_register(Config::AGCCTRL0, |r| {
            AGCCTRL0(r).modify().filter_length(filter_length.into()).bits()
        })?;
        Ok(())
    }

    /// Configures when to run automatic calibration.
    pub fn set_autocalibration(&mut self, autocal: AutoCalibration) -> Result<(), Error<SpiE>> {
        self.0.modify_register(Config::MCSM0, |r| {
            MCSM0(r).modify().fs_autocal(autocal.into()).bits()
        })?;
        Ok(())
    }

    pub fn set_deviation(&mut self, deviation: u64) -> Result<(), Error<SpiE>> {
        let (mantissa, exponent) = from_deviation(deviation);
        self.0.write_register(
            Config::DEVIATN,
            DEVIATN::default().deviation_m(mantissa).deviation_e(exponent).bits(),
        )?;
        Ok(())
    }

    /// Sets the data rate (in bits per second).
    pub fn set_data_rate(&mut self, baud: u64) -> Result<(), Error<SpiE>> {
        let (mantissa, exponent) = from_drate(baud);
        self.0
            .modify_register(Config::MDMCFG4, |r| MDMCFG4(r).modify().drate_e(exponent).bits())?;
        self.0.write_register(Config::MDMCFG3, MDMCFG3::default().drate_m(mantissa).bits())?;
        Ok(())
    }

    /// Sets the channel bandwidth (in Hertz).
    pub fn set_chanbw(&mut self, bandwidth: u64) -> Result<(), Error<SpiE>> {
        let (mantissa, exponent) = from_chanbw(bandwidth);
        self.0.modify_register(Config::MDMCFG4, |r| {
            MDMCFG4(r).modify().chanbw_m(mantissa).chanbw_e(exponent).bits()
        })?;
        Ok(())
    }

    pub fn get_hw_info(&mut self) -> Result<(u8, u8), Error<SpiE>> {
        let partnum = self.0.read_register(Status::PARTNUM)?;
        let version = self.0.read_register(Status::VERSION)?;
        Ok((partnum, version))
    }

    /// Received Signal Strength Indicator is an estimate of the signal power level in the chosen channel.
    pub fn get_rssi_dbm(&mut self) -> Result<i16, Error<SpiE>> {
        Ok(rssi_to_dbm(self.0.read_register(Status::RSSI)?))
    }

    /// The Link Quality Indicator metric of the current quality of the received signal.
    pub fn get_lqi(&mut self) -> Result<u8, Error<SpiE>> {
        let lqi = self.0.read_register(Status::LQI)?;
        Ok(lqi & !(1u8 << 7))
    }

    /// Configure the sync word to use, and at what level it should be verified.
    pub fn set_sync_mode(&mut self, sync_mode: SyncMode) -> Result<(), Error<SpiE>> {
        let reset: u16 = (SYNC1::default().bits() as u16) << 8 | (SYNC0::default().bits() as u16);

        let (mode, word) = match sync_mode {
            SyncMode::Disabled => (SyncCheck::DISABLED, reset),
            SyncMode::MatchPartial(word) => (SyncCheck::CHECK_15_16, word),
            SyncMode::MatchPartialRepeated(word) => (SyncCheck::CHECK_30_32, word),
            SyncMode::MatchFull(word) => (SyncCheck::CHECK_16_16, word),
        };
        self.0.modify_register(Config::MDMCFG2, |r| {
            MDMCFG2(r).modify().sync_mode(mode.value()).bits()
        })?;
        self.0.write_register(Config::SYNC1, ((word >> 8) & 0xff) as u8)?;
        self.0.write_register(Config::SYNC0, (word & 0xff) as u8)?;
        Ok(())
    }

    /// Configure signal modulation.
    pub fn set_modulation(&mut self, format: Modulation) -> Result<(), Error<SpiE>> {
        use lowlevel::types::ModFormat as MF;

        let value = match format {
            Modulation::BinaryFrequencyShiftKeying => MF::MOD_2FSK,
            Modulation::GaussianFrequencyShiftKeying => MF::MOD_GFSK,
            Modulation::OnOffKeying => MF::MOD_ASK_OOK,
            Modulation::FourFrequencyShiftKeying => MF::MOD_4FSK,
            Modulation::MinimumShiftKeying => MF::MOD_MSK,
        };
        self.0.modify_register(Config::MDMCFG2, |r| {
            MDMCFG2(r).modify().mod_format(value.value()).bits()
        })?;
        Ok(())
    }

    /// Configure device address, and address filtering.
    pub fn set_address_filter(&mut self, filter: AddressFilter) -> Result<(), Error<SpiE>> {
        use lowlevel::types::AddressCheck as AC;

        let (mode, addr) = match filter {
            AddressFilter::Disabled => (AC::DISABLED, ADDR::default().bits()),
            AddressFilter::Device(addr) => (AC::SELF, addr),
            AddressFilter::DeviceLowBroadcast(addr) => (AC::SELF_LOW_BROADCAST, addr),
            AddressFilter::DeviceHighLowBroadcast(addr) => (AC::SELF_HIGH_LOW_BROADCAST, addr),
        };
        self.0.modify_register(Config::PKTCTRL1, |r| {
            PKTCTRL1(r).modify().adr_chk(mode.value()).bits()
        })?;
        self.0.write_register(Config::ADDR, addr)?;
        Ok(())
    }

    /// Configure packet mode, and length.
    pub fn set_packet_length(&mut self, length: PacketLength) -> Result<(), Error<SpiE>> {
        use lowlevel::types::LengthConfig as LC;

        let (format, pktlen) = match length {
            PacketLength::Fixed(limit) => (LC::FIXED, limit),
            PacketLength::Variable(max_limit) => (LC::VARIABLE, max_limit),
            PacketLength::Infinite => (LC::INFINITE, PKTLEN::default().bits()),
        };
        self.0.modify_register(Config::PKTCTRL0, |r| {
            PKTCTRL0(r).modify().length_config(format.value()).bits()
        })?;
        self.0.write_register(Config::PKTLEN, pktlen)?;
        Ok(())
    }

    /// Set radio in Receive/Transmit/Idle/Calibrate mode.
    pub fn set_radio_mode(&mut self, radio_mode: RadioMode) -> Result<(), Error<SpiE>> {
        let target = match radio_mode {
            RadioMode::Receive => {
                self.set_radio_mode(RadioMode::Idle)?;
                self.0.write_strobe(Command::SRX)?;
                MachineState::RX
            }
            RadioMode::Transmit => {
                self.set_radio_mode(RadioMode::Idle)?;
                self.0.write_strobe(Command::STX)?;
                MachineState::TX
            }
            RadioMode::Idle => {
                self.0.write_strobe(Command::SIDLE)?;
                MachineState::IDLE
            }
            RadioMode::Calibrate => {
                self.set_radio_mode(RadioMode::Idle)?;
                self.0.write_strobe(Command::SCAL)?;
                MachineState::IDLE
            }
        };
        self.await_machine_state(target)
    }

    /// Resets the chip.
    pub fn reset(&mut self) -> Result<(), Error<SpiE>> {
        self.0.write_strobe(Command::SRES)?;
        Ok(())
    }

    /// Configure some default settings, to be removed in the future.
    #[rustfmt::skip]
    pub fn set_defaults(&mut self) -> Result<(), Error<SpiE, >> {
        self.0.write_strobe(Command::SRES)?;

        self.0.write_register(Config::PKTCTRL0, PKTCTRL0::default()
            .white_data(0).bits()
        )?;

        self.set_synthesizer_if(203_125)?;

        self.0.write_register(Config::MDMCFG2, MDMCFG2::default()
            .dem_dcfilt_off(1).bits()
        )?;

        self.set_autocalibration(AutoCalibration::FromIdle)?;

        self.0.write_register(Config::AGCCTRL2, AGCCTRL2::default()
            .max_lna_gain(0x04).bits()
        )?;

        Ok(())
    }

    fn await_machine_state(&mut self, target: MachineState) -> Result<(), Error<SpiE>> {
        loop {
            let marcstate = MARCSTATE(self.0.read_register(Status::MARCSTATE)?);
            if target.value() == marcstate.marc_state() {
                break;
            }
        }
        Ok(())
    }

    fn rx_bytes_available(&mut self) -> Result<u8, Error<SpiE>> {
        let mut last = 0;

        loop {
            let rxbytes = RXBYTES(self.0.read_register(Status::RXBYTES)?);
            if rxbytes.rxfifo_overflow() == 1 {
                return Err(Error::RxOverflow);
            }

            let nbytes = rxbytes.num_rxbytes();
            if nbytes > 0 && nbytes == last {
                break;
            }

            last = nbytes;
        }
        Ok(last)
    }

    // Should also be able to configure MCSM1.RXOFF_MODE to declare what state
    // to enter after fully receiving a packet.
    // Possible targets: IDLE, FSTON, TX, RX
    pub fn receive(&mut self, addr: &mut u8, buf: &mut [u8]) -> Result<u8, Error<SpiE>> {
        match self.rx_bytes_available() {
            Ok(_nbytes) => {
                let mut length = 0u8;
                self.0.read_fifo(addr, &mut length, buf)?;
                let lqi = self.0.read_register(Status::LQI)?;
                self.await_machine_state(MachineState::IDLE)?;
                self.0.write_strobe(Command::SFRX)?;
                if (lqi >> 7) != 1 {
                    Err(Error::CrcMismatch)
                } else {
                    Ok(length)
                }
            }
            Err(err) => {
                self.0.write_strobe(Command::SFRX)?;
                Err(err)
            }
        }
    }

    /// Configures raw data to be passed through, without any packet handling.
    pub fn set_raw_mode(&mut self) -> Result<(), Error<SpiE>> {
        // Serial data output.
        self.0.write_register(Config::IOCFG0, 0x0d)?;
        // Disable data whitening and CRC, fixed packet length, asynchronous serial mode.
        self.0.write_register(Config::PKTCTRL0, 0x30)?;
        Ok(())
    }
}

/// Modulation format configuration.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Modulation {
    /// 2-FSK.
    BinaryFrequencyShiftKeying,
    /// GFSK.
    GaussianFrequencyShiftKeying,
    /// ASK / OOK.
    OnOffKeying,
    /// 4-FSK.
    FourFrequencyShiftKeying,
    /// MSK.
    MinimumShiftKeying,
}

/// Packet length configuration.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum PacketLength {
    /// Set packet length to a fixed value.
    Fixed(u8),
    /// Set upper bound of variable packet length.
    Variable(u8),
    /// Infinite packet length, streaming mode.
    Infinite,
}

/// Address check configuration.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum AddressFilter {
    /// No address check.
    Disabled,
    /// Address check, no broadcast.
    Device(u8),
    /// Address check and 0 (0x00) broadcast.
    DeviceLowBroadcast(u8),
    /// Address check and 0 (0x00) and 255 (0xFF) broadcast.
    DeviceHighLowBroadcast(u8),
}

/// Radio operational mode.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum RadioMode {
    Receive,
    Transmit,
    Idle,
    Calibrate,
}

/// Sync word configuration.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SyncMode {
    /// No sync word.
    Disabled,
    /// Match 15 of 16 bits of given sync word.
    MatchPartial(u16),
    /// Match 30 of 32 bits of a repetition of given sync word.
    MatchPartialRepeated(u16),
    /// Match 16 of 16 bits of given sync word.
    MatchFull(u16),
}

/// Target amplitude for AGC.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum TargetAmplitude {
    /// 24 dB
    Db24 = 0,
    /// 27 dB
    Db27 = 1,
    /// 30 dB
    Db30 = 2,
    /// 33 dB
    Db33 = 3,
    /// 36 dB
    Db36 = 4,
    /// 38 dB
    Db38 = 5,
    /// 40 dB
    Db40 = 6,
    /// 42 dB
    Db42 = 7,
}

impl From<TargetAmplitude> for u8 {
    fn from(value: TargetAmplitude) -> Self {
        value as Self
    }
}

/// Channel filter samples or OOK/ASK decision boundary for AGC.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum FilterLength {
    /// 8 filter samples for FSK/MSK, or 4 dB for OOK/ASK.
    Samples8 = 0,
    /// 16 filter samples for FSK/MSK, or 8 dB for OOK/ASK.
    Samples16 = 1,
    /// 32 filter samples for FSK/MSK, or 12 dB for OOK/ASK.
    Samples32 = 2,
    /// 64 filter samples for FSK/MSK, or 16 dB for OOK/ASK.
    Samples64 = 3,
}

impl From<FilterLength> for u8 {
    fn from(value: FilterLength) -> Self {
        value as Self
    }
}